Page 431 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 431

422                     FUNCTIONS OF A COMPLEX VARIABLE                   [CHAP. 16

                                         2
                             x sin  x     e                             sin x
                          ð                                           ð   2
                           1                                           1
                     16.82.                                   16.84.
                              2   2  dx ¼  4                             x 2  dx ¼  2
                           0 ðx þ 1Þ                                  0
                          ð                                           ð   3
                           1   sin x                                   1  sin x  3
                     16.83.               ð2e   3Þ            16.85.
                               2   2  dx ¼  4e                           x 3  dx ¼  8
                           0 xðx þ 1Þ                                 0
                          ð                                 þ   iz
                             cos x                              e
                           1
                     16.86.       dx ¼        .  Hint: Consider    dz, where C is a rectangle with vertices at ð R; 0Þ,
                           0 cosh x   2coshð =2Þ             C cosh z

                          ðR; 0Þ; ðR; Þ ð R; Þ.  Then let R !1:
                                   r
                     MISCELLANEOUS PROBLEMS
                                 i
                     16.87. If z ¼  e  and f ðzÞ¼ uð ;  Þþ ivð ;  Þ, where   and   are polar coordinates, show that the Cauchy-Rie-
                          mann equations are
                                                       @u  1 @v   @v    1 @u
                                                              ;
                                                       @   ¼    @   @   ¼     @
                     16.88. If w ¼ f ðzÞ, where f ðzÞ is analytic, defines a transformation from the z plane to the w plane where z ¼ x þ iy
                          and w ¼ u þ iv,prove that the Jacobian of the transformation is given by
                                                           @ðu; vÞ    2
                                                                   0
                                                                ¼j f ðzÞj
                                                           @ðx; yÞ
                                                                                            2
                                                                                        2
                                                                                       @ F  @ F
                     16.89. Let Fðx; yÞ be transformed to Gðu; vÞ by the transformation w ¼ f ðzÞ. Show that if  þ  ¼ 0, then at
                                                                                       @x 2  @y 2
                                               2
                                                   2
                                              @ G  @ G
                          all points where f ðzÞ 6¼ 0,  þ  ¼ 0.
                                        0
                                              @u 2  @v 2
                                                            az þ b
                                                                 , where ad   bc 6¼ 0, circles in the z plane are trans-
                     16.90. Show that by the bilinear transformation w ¼  cz þ d
                          formed into circles of the w plane.
                     16.91. If f ðzÞ is analytic inside and on the circle jz   aj¼ R,prove Cauchy’s inequality, namely
                                                                    n!M
                                                           j f  ðnÞ ðaÞj @
                                                                    R  n
                          where j f ðzÞj @ M on the circle.  [Hint: Use Cauchy’s integral formulas.]
                     16.92. Let C 1 and C 2 be concentric circles having center a and radii r 1 and r 2 , respectively, where r 1 < r 2 .If a þ h is
                          any point in the annular region bounded by C 1 and C 2 , and f ðzÞ is analytic in this region, prove Laurent’s
                          theorem that
                                                                   1
                                                                  X    n
                                                                     a n h
                                                          f ða þ hÞ¼
                                                                   1
                                                              1  þ  f ðzÞ dz
                          where
                                                                      nþ1
                                                         a n ¼
                                                             2 i C ðz   aÞ
                          C being any closed curve in the angular region surrounding C 1 .
                                                þ              þ
                                               1     f ðzÞ dz  1   f ðzÞ dz            1
                           Hint: Write  f ða þ hÞ¼                        and expand       in two different
                                                                                    z   a   h
                                              2 i C 2  z  ða þ hÞ  2 i C 1  z  ða þ hÞ

                          ways.
                                                                        z
                                                                             which converges for 1 < jzj < 2 and
                     16.93. Find a Laurent series expansion for the function f ðzÞ¼
                          diverges elsewhere.                      ðz þ 1Þðz þ 2Þ

                                         z        1    2       1       1
                           Hint: Write        ¼     þ     ¼        þ      :
                                                z þ 1  z þ 2        1 þ z=2
                                    ðz þ 1Þðz þ 2Þ         zð1 þ 1=zÞ
   426   427   428   429   430   431   432   433   434   435   436