Page 428 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 428

CHAP. 16]               FUNCTIONS OF A COMPLEX VARIABLE                         419

                                                                 2
                                                                     2
                               (b)Region in the first quadrant bounded by x þ y ¼ 9, the x-axis and the line y ¼ x.
                                                2
                                                      2
                               (c)Interior of ellipse x =25 þ y =16 ¼ 1.
                     16.41. Express each function in the form uðx; yÞþ ivðx; yÞ, where u and v are real.
                                                     2
                              2
                                                    z
                           (a) z þ 2iz;  ðbÞ z=ð3 þ zÞ;  ðcÞ e ;  ðdÞ lnð1 þ zÞ.
                                                          2
                                            2
                                      3
                                                      2
                           Ans.  (a) u ¼ x   3xy   2y; v ¼ 3x y   y þ 2x
                                        2
                                       x þ 3x þ y 2       3y
                               (b) u ¼  2     2  ; v ¼  2    2
                                     x þ 6x þ y þ 9  x þ 6x þ y þ 9
                                                    2
                                       2
                               (c) u ¼ e x  y 2  cos 2xy; v ¼ e x  y 2  sin 2xy
                                                           y
                                                 2
                                             2
                                     1
                               (d) u ¼ lnfð1 þ xÞ þ y g; v ¼ tan  1  þ 2k ; k ¼ 0;  1;  2; .. .
                                     2                    1 þ x
                                           2
                                                          2
                                               2
                     16.42. Prove that  (a) lim z ¼ z 0 ;  ðbÞ f ðzÞ¼ z is continuous at z ¼ z 0 directly from the definition.
                                       z!x 0
                                                                                           3
                                                                                        2
                                                                                              4
                                               5
                     16.43. (a)If z ¼ ! is any root of z ¼ 1different from 1, prove that all the roots are 1;!;! ;! ;! .
                                            2
                                                    4
                                                3
                           (b) Show that 1 þ ! þ ! þ ! þ ! ¼ 0.
                                                                    n
                           (c)Generalize the results in (a) and (b)to the equation z ¼ 1.
                     DERIVATIVES, CAUCHY-RIEMANN EQUATIONS
                                          1    dw
                     16.44. (a)If w ¼ f ðzÞ¼ z þ , find  directly from the definition.
                                          z     dz
                           (b) For what finite values of z is f ðzÞ nonanalytic?
                                        2
                           Ans.  ðaÞ 1   1=z ;  ðbÞ z ¼ 0
                                             4
                     16.45. Given the function w ¼ z .  (a)Find real functions u and v such that w ¼ u þ iv.  (b) Show that the
                           Cauchy-Riemann equations hold at all points in the finite z plane.  (c)Prove that u and v are harmonic
                           functions.  (d)Determine dw=dz.
                                                4
                                           2 2
                                      4
                                                      3
                           Ans:  ðaÞ u ¼ x   6x y þ y ; v ¼ 4x y   4xy 2  ðdÞ 4z 3
                     16.46. Prove that f ðzÞ¼ zjzj is not analytic anywhere.
                                         1
                                            is analytic in any region not including z ¼ 2.
                     16.47. Prove that f ðzÞ¼
                                        z   2
                     16.48. If the imaginary part of an analytic function is 2xð1   yÞ,determine  (a)the real part,  (b)the function.
                                   2
                                                        2
                                       2
                           Ans:  ðaÞ y   x   2y þ c;  ðbÞ 2iz   z þ c, where c is real
                                                                    x
                     16.49. Construct an analytic function f ðzÞ whose real part is e ðx cos y þ y sin yÞ and for which f ð0Þ¼ 1.
                           Ans:  ze  z  þ 1
                                                                          2
                     16.50. Prove that there is no analytic function whose imaginary part is x   2y.
                     16.51. Find f ðzÞ such that f ðzÞ¼ 4z   3 and f ð1 þ iÞ¼ 3i.
                                          0
                                      2
                           Ans:  f ðzÞ¼ 2z   3z þ 3   4i
                     INTEGRALS, CAUCHY’S THEOREM, CAUCHY’S INTEGRAL FORMULAS
                                 ð  3þi
                     16.52. Evaluate  ð2z þ 3Þ dz:
                                  1 2i
                                                     2
                           (a)along the path x ¼ 2t þ 1; y ¼ 4t   t   20 @ t @ 1.
                           (b)along the straight line joining 1   2i and 3 þ i.
                           (c)along straight lines from 1   2i to 1 þ i and then to 3 þ i.
                           Ans:  17 þ 19i in all cases
   423   424   425   426   427   428   429   430   431   432   433