Page 423 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 423

414                     FUNCTIONS OF A COMPLEX VARIABLE                   [CHAP. 16



                                                    i       2               2    1
                              Residue at  i=3 ¼ lim  z þ           ¼ lim       ¼   by L’Hospital’s rule.
                                                         2
                                            z! i=2  3  3z þ 10iz   3  z! i=2 6z þ 10i  4i

                                         2 dz        1
                                   þ
                              Then    2        ¼ 2 i   ¼ ,the required value.
                                    C 3z þ 10iz   3  4i  2
                                   ð 2   cos 3
                     16.32. Show that          d  ¼  .
                                    0 5   4 cos    12
                                                                  3
                                   i       z þ z  1     e 3i   þ e  3i   z þ z  3
                                             2             2        2
                              If z ¼ e ,cos   ¼  ; cos 3  ¼     ¼      ; dz ¼ iz d .
                                                                        3
                                                                   3
                                                ð 2   cos 3    þ  ðz þ z Þ=2  dz
                              Then                         d  ¼            !
                                                 0 5   4cos    C     z þ z  1  iz
                                                                 5   4
                                                                        2
                                                                        6
                                                                1  þ   z þ 1
                                                                                dz
                                                                    3
                                                             ¼
                                                                2i C z ð2z   1Þðz   2Þ
                          where C is the contour of Problem 16.31.
                                                                               1
                              The integrand has a pole of order 3 at z ¼ 0 and a simple pole z ¼ within C.
                                                                               2
                                                    (               )
                                                            6
                                                1 d 2  3    z þ 1      21
                              Residue at z ¼ 0is lim  z              ¼   :
                                                         3
                                             z!0 2! dz 2  z ð2z   1Þðz   2Þ  8
                                                (          6       )
                                                           z þ 1       65
                                         1  is lim   1                   :
                                         2           2  3
                              Residue at z ¼     ðz   Þ             ¼
                                            z!1=2      z ð2z   1Þðz   2Þ  24
                                            6
                                    1  þ   z þ 1          1     21  65
                                                                           as required.
                              Then      3           dz ¼   ð2 iÞ      ¼
                                    2i                   2i     8  24   12
                                      C z ð2z   1Þðz   2Þ
                                    M          i
                     16.33. If j f ðzÞj @  for z ¼ Re , where k > 0 and M are constants, prove that
                                    R k
                                                            ð
                                                         lim  e imz  f ðzÞ dz ¼ 0
                                                        R!1
                          where   is the semicircular arc of the contour in Problem 16.27 and m is a positive constant.
                                        ð           ð    i
                                     i
                                                             i
                                                                 i
                              If z ¼ Re ;  e imz  f ðzÞ dz ¼  e imRe  f ðRe Þ iRe d :
                                                    0
                                        ð                   ð
                                           imRe i   i   i       imRe i   i
                              Then        e    f ðRe Þ iRe d  @     f ðRe Þ iRe   d
                                                                           i

                                                               e
                                         0                   0
                                                            ð

                                                               imR cos   mR sin    i
                                                                                i
                                                                         f ðRe Þ iRe   d
                                                          ¼   e
                                                             0
                                                            ð
                                                                mR sin    i
                                                              e     j f ðRe Þj Rd
                                                          ¼
                                                             0
                                                             M  ð     mR sin    2M  ð  =2   mr sin
                                                          @       e     d  ¼       e     d
                                                            R k 1  0        R k 1  0
                              Now sin   A 2 =  for 0 @   @  =2 (see Problem 4.73, Chapter 4). Then the last integral is less than or
                          equal to
                                                   2M  ð   =2   2mR =    M
                                                          e     d  ¼   ð1   e  mR  Þ
                                                   R k 1  0         mR k
                              As R !1 this approaches zero, since m and k are positive, and the required result is proved.
   418   419   420   421   422   423   424   425   426   427   428