Page 421 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 421

412                     FUNCTIONS OF A COMPLEX VARIABLE                   [CHAP. 16



                          (b)Since jzj¼ 10 encloses both poles z ¼ 1 and z ¼ 3
                                                                         !
                                                                  e  5e  3         3
                                             the required integral ¼ 2 i     ¼   iðe   5e Þ
                                                                  16  16        8



                     EVALUATION OF DEFINITE INTEGRALS
                                    M           i                                            ð
                     16.27. If j f ðzÞj @  for z ¼ Re , where k > 1 and M are constants, prove that lim  f ðzÞ dz ¼ 0
                                    R k                                                  R!1
                          where   is the semicircular arc of radius R shown in Fig. 16-9.
                              By the result (4), Page 394, we have
                                 ð         ð
                                                      M        M

                                   f ðzÞ dz @  j f ðzÞjjdzj @
                                                      R k     R þ  R k 1

                          since the length of arc L ¼  R.  Then
                                 ð                         ð

                              lim     f ðzÞ dz ¼ 0  and so  lim  f ðzÞ dz ¼ 0


                             R!1                       R!1
                                                                                     Fig. 16-9
                                                            M
                                                i
                     16.28. Show  that  for  z ¼ Re ,  j f ðzÞj @  ; k > 1  if
                                  1                         R k
                                     .
                          f ðzÞ¼    4
                                1 þ z

                                     i          1          1        1     2
                                                       @               @    if R is large enough (say R > 2, for
                              If z ¼ Re , j f ðzÞj ¼     4 4i   ¼  4       4
                                             1 þ R e    jR e j  1  R   1  R
                                                 4 4i
                          example) so that M ¼ 2; k ¼ 4.
                                                                                        4 4i
                              Note that we have made use of the inequality jz 1 þ z 2 j A jz 1 j jz 2 j with z 1 ¼ R e  and z 2 ¼ 1.
                                  ð
                                      dx
                                   1
                     16.29. Evaluate  4   .
                                   0 x þ 1
                                     þ
                                        dz
                              Consider     , where C is the closed contour of Problem 16.27 consisting of the line from  R to R
                                       4
                                     C z þ 1
                          and the semicircle  , traversed in the positive (counterclockwise) sense.
                                   4
                                                                                       4
                              Since z þ 1 ¼ 0 when z ¼ e  i=4 ; e 3 i=4 ; e 5 i=4 ; e 7 i=4 ,these are simple poles of 1=ðz þ 1Þ. Only the poles
                          e  i=4  and e 3 i=4  lie within C.  Then using L’Hospital’s rule,
                                                                            1
                                                 Residue at e  i=4  ¼ lim  ðz   e  i=4  Þ
                                                                           4
                                                               z!e  i=4    z þ 1
                                                                    1   1  3 i=4
                                                             ¼ lim   3  ¼ e
                                                               z!e  i=4 4z  4
                                                                             1
                                                 Residue at e 3 i=4  ¼ lim  ðz   e 3 i=4  Þ
                                                                             4
                                                               z!e 3 i=4    z þ 1
                                                                    1   1  9 i=4
                                                             ¼ lim   3  ¼ e
                                                               z!e 3 i=4 4z  4
                              Thus
                                                                              p ffiffiffi
                                                  þ
                                                     dz       1  3 i=4  1  9 i=4  	    2
                                                        ¼ 2 i  4 e  þ e    ¼                         ð1Þ
                                                                     4
                                                    4
                                                  C z þ 1                     2
   416   417   418   419   420   421   422   423   424   425   426