Page 422 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 422

CHAP. 16]               FUNCTIONS OF A COMPLEX VARIABLE                         413


                           i.e.,
                                                       R   dx      dz     2
                                                       ð        ð        p ffiffiffi
                                                          4
                                                                   4
                                                        R x þ 1  þ    z þ 1  ¼  2                     ð2Þ
                              Taking the limit of both sides of (2)as R !1 and using the results of Problem 16.28, we have
                                                        R   dx    1   dx     2
                                                       ð         ð          p ffiffiffi
                                                    lim        ¼         ¼
                                                                     4
                                                           4
                                                         R x þ 1   1 x þ 1  2
                                                    R!1
                                                                                  p ffiffiffi
                                   ð          ð
                                    1   dx     1  dx                               2
                              Since        ¼ 2       ; the required integral has the value  :
                                                  4
                                       4
                                     1 x þ 1   0 x þ 1                             4
                                   ð           2
                                              x dx         7
                                    1
                     16.30. Show that                        :
                                         2   2  2        ¼  50
                                     1 ðx þ 1Þ ðx þ 2x þ 2Þ
                                              z 2
                              The poles of             enclosed by the contour C of Problem 16.27 are z ¼ i of order 2 and
                                         2   2  2
                                       ðz þ 1Þ ðz þ 2z þ 2Þ
                           z ¼ 1 þ i of order 1.
                                                  (                        )
                                                d                z 2           9i   12
                              Residue at z ¼ i is lim  2                            :
                                             z!i dz  ðz   iÞ  2   2  2       ¼  100
                                                        ðz þ iÞ ðz   iÞ ðz þ 2z þ 2Þ
                                                                        z 2          3   4i
                              Residue at z ¼ 1 þ i is  lim ðz þ 1   iÞ             ¼
                                                 z! 1þi        2    2                 25
                                                              ðz þ 1Þ ðz þ 1   iÞðz þ 1 þ iÞ
                                                      z dz          9i   12  3   4i  7
                                              þ       2
                              Then                             ¼ 2 i
                                                 2   2  2            100  þ  25  ¼  50
                                              C ðz þ 1Þ ðz þ 2z þ 2Þ
                                                      2
                                                                         2
                                            ð  R     x dx        ð       z dz       7
                           or
                                                 2   2  2      þ    2   2  2      ¼  50
                                              R ðx þ 1Þ ðx þ 2x þ 2Þ    ðz þ 1Þ ðz þ 2z þ 2Þ
                              Taking the limit as R !1 and noting that the second integral approaches zero by Problem 16.27, we
                           obtain the required result.
                                  ð 2   d
                     16.31. Evaluate         .
                                   0 5 þ 3 sin
                                                  i    i      1
                                                 e   e    z   z
                                                                     i
                                     i
                              Let z ¼ e .  Then sin   ¼  ¼     , dz ¼ ie d  ¼ iz d  so that
                                                    2i      2i
                                             ð 2   d     þ     dz=iz     þ    2 dz
                                                                            2
                                              0 5 þ 3 sin    ¼  C  z   z  1  ! ¼  C 3z þ 10iz   3
                                                           5 þ 3
                                                                  2i
                           where C is the circle of unit radius with center at the origin, as shown in Fig. 16-10 below.
                                            2
                              The poles of        are the simple poles
                                         2
                                        3z þ 10iz   3
                                                        p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                          100 þ 36
                                                   10i
                                                         6
                                               z ¼
                                                   10i   8i
                                                     6
                                                 ¼
                                                 ¼ 3i;  i=3:
                           Only  i=3 lies inside C.                                         Fig. 16-10
   417   418   419   420   421   422   423   424   425   426   427