Page 419 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 419

410                     FUNCTIONS OF A COMPLEX VARIABLE                   [CHAP. 16


                              þ
                                f ðzÞ dz ¼ 2 ia  1
                          ðaÞ
                               C              n 1
                                         1   d
                                                       n
                          ðbÞ a  1 ¼ lim         fðz   aÞ f ðzÞg:
                                   z!a ðn   1Þ! dz n 1
                          (a)Byintegration, we have on using Problem 16.13
                                  þ        þ               þ        þ
                                               a  n          a  1                        2
                                    f ðzÞ dz ¼    n  dz þ     þ  dz þ  fa 0 þ a 1 ðz   aÞþ a 2 ðz   aÞ þ     g dz
                                   C        C ðz   aÞ      C z   a   C
                                         ¼ 2 ia  1
                                 Since only the term involving a  1 remains, we call a  1 the residue of f ðzÞ at the pole z ¼ a.
                                                n
                          (b) Multiplication by ðz   aÞ gives the Taylor series
                                                n                               n 1
                                           ðz   aÞ f ðzÞ¼ a  n þ a  nþ1 ðz   aÞþ     þ a  1 ðz   aÞ  þ
                                 Taking the ðn   1Þst derivative of both sides and letting z ! a,we find
                                                                 d n 1
                                                    ðn   1Þ!a  1 ¼ lim    n
                                                              z!a dz n 1  fðz   aÞ f ðzÞg
                              from which the required result follows.


                     16.24. Determine the residues of each function at the indicated poles.
                                   z 2
                                    2
                          ðaÞ            ; z ¼ 2; i;  i:  These are simple poles. Then:
                              ðz   2Þðz þ 1Þ
                                                            (     2    )
                                                                 z        4
                                    Residue at z ¼ 2is  lim ðz   2Þ     ¼ :
                                                    z!2            2      5
                                                             ðz   2Þðz þ 1Þ
                                                           (       2      )      2
                                                                  z             i     1   2i
                                    Residue at z ¼ i is  lim ðz   iÞ        ¼        ¼     :
                                                    z!i                                 10
                                                            ðz   2Þðz   iÞðz þ iÞ  ði   2Þð2iÞ
                                                            (       2     )       2
                                                                   z              i      1 þ 2i
                                    Residue at z ¼ i is  lim ðz þ iÞ        ¼           ¼     :
                                                    z! i     ðz   2Þðz   iÞðz þ iÞ  ð i   2Þð 2iÞ  10
                                 1
                                     ; z ¼ 0;  2:  z ¼ 0isasimple pole, z ¼ 2isa pole of order 3.  Then:
                                    3
                          ðbÞ
                              zðz þ 2Þ
                                                                   1     1
                                          Residue at z ¼ 0is  lim z    ¼ :
                                                           z!0        3  8
                                                                zðz þ 2Þ
                                                               1 d  2     3   1
                                          Residue at z ¼ 2is  lim   ðz þ 2Þ
                                                           z! 2 2! dz 2         3
                                                                           zðz þ 2Þ
                                                                 1 d  2       1        1
                                                                                2
                                                                      1
                                                           ¼ lim        ¼ lim      ¼  :
                                                             z! 2 2 dz 2  z  z! 2 2 z 3  8
                                 Note that these residues can also be obtained from the coefficients of 1=z and 1=ðz þ 2Þ in the
                              respective Laurent series [see Problem 16.22(e)].
                                ze zt
                          ðcÞ      2  ; z ¼ 3; a pole of order 2 or double pole. Then:
                              ðz   3Þ
                                                   d          ze zt     d
                                       Residue is lim      2       ¼ lim    zt      zt   zt
                                                z!3 dz  ðz   3Þ    2  z!3 dz  ðze Þ¼ lim ðe þ zte Þ
                                                                                z!3
                                                             ðz   3Þ
                                                                      3t
                                                                   ¼ e þ 3te 3t
   414   415   416   417   418   419   420   421   422   423   424