Page 414 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 414

CHAP. 16]               FUNCTIONS OF A COMPLEX VARIABLE                         405

                                                         þ        þ
                           i.e.,                           f ðzÞ dz ¼  f ðzÞ dz
                                                          C 1      C 2
                              Note that f ðzÞ need not be analytic within curve C 2 .


                                           dz      2 i  if n ¼ 1
                                       þ
                     16.13. (a) Prove that    n  ¼  0  if n ¼ 2; 3; 4; ...  , where C is a simple closed curve bounding
                                       C ðz   aÞ
                              a region having z ¼ a as interior point.
                              (b)What is the value of the integral if n ¼ 0;
                               1;  2;  3; ... ?
                           (a)Let C 1 be a circle of radius   having center at z ¼ a (see Fig.
                                              n
                              16-7). Since ðz   aÞ  is analytic within and on the boundary
                              of the region bounded by C and C 1 ,we have by Problem
                              16.12,
                                                                                       Fig. 16-7
                                              dz        dz
                                          þ        þ
                                                 n  ¼      n
                                           C ðz   aÞ  C 1  ðz   aÞ
                                                                                     i          i
                                  To evaluate this last integral, note that on C 1 , jz   aj¼   or z   a ¼  e and dz ¼ i e d .  The
                              integral equals
                                              i
                                          ð 2   i e d   i  ð 2   ð1 nÞi   i  e ð1 nÞi       2
                                             n in
                                          0   e  ¼    n 1  0  e  d  ¼    n 1  ð1   nÞi      0  ¼ 0  if n 6¼ 1
                                                       ð 2
                                  If n ¼ 1, the integral equals i  d  ¼ 2 i.
                                                        0
                                                                       2
                           (b) For n ¼ 0;  1;  2; .. . the integrand is 1; ðz   aÞ; ðz   aÞ ; ... and is analytic everywhere inside C 1 ,
                              including z ¼ a.  Hence, by Cauchy’s theorem the integral is zero.
                                      dz
                                   þ
                     16.14. Evaluate     , where C is  (a) the circle jzj¼ 1;  ðbÞ the circle jz þ ij¼ 4.
                                    C z   3
                           (a)Since z ¼ 3is not interior to jzj¼ 1, the integral equals zero (Problem 16.11).
                           (b)Since z ¼ 3isinterior to jz þ ij¼ 4, the integral equals 2 i (Problem 16.13).


                     16.15. If f ðzÞ is analytic inside and on a simple closed curve C,and a is any point within C, prove that
                                                            1  þ  f ðzÞ
                                                                     dz
                                                      f ðaÞ¼
                                                           2 i  C z   a
                              Referring to Problem 16.12 and the figure of Problem 16.13, we have
                                                        þ         þ
                                                          f ðzÞ      f ðzÞ
                                                                         dz
                                                         C z   a   C 1  z   a
                                                              dz ¼
                                                                  ð 2
                                           i
                                                                          i
                              Letting z   a ¼  e ,the last integral becomes i  f ða þ  e Þ d .  But since f ðzÞ is analytic, it is
                           continuous.  Hence,                     0
                                           ð 2            ð  2             ð  2
                                                                     i
                                                   i
                                        lim i  f ða þ  e Þ d  ¼ i  lim f ða þ  e Þ d  ¼ i  f ðaÞ d  ¼ 2 if ðaÞ
                                         !0  0             0   !0           0
                           and the required result follows.
                                          cos z            e
                                       þ              þ     x
                     16.16. Evaluate  (a)     dz;  ðbÞ         dz, where C is the circle jz   1j¼ 3.
                                        C z            C zðz þ 1Þ
   409   410   411   412   413   414   415   416   417   418   419