Page 412 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 412

CHAP. 16]               FUNCTIONS OF A COMPLEX VARIABLE                         403

                                                                                            z þ   z z  z     z z
                                                                            z                          .
                                  This can also be accomplished by nothing that z ¼ x þ iy;   z ¼ x   iy so that x ¼  , y ¼
                                                                                             2       2i
                                                                            z
                              The result is then obtained by substitution; the terms involving   z drop out.
                     INTEGRALS, CAUCHY’S THEOREM, CAUCHY’S INTEGRAL FORMULAS


                                  ð 2þ4i
                                       2
                     16.10. Evaluate  z dz
                                   1þi
                                                       2
                           (a) along the parabola x ¼ t; y ¼ t where 1 @ t @ 2,
                           (b) along the straight line joining 1 þ i and 2 þ 4i,
                           (c) along straight lines from 1 þ i to 2 þ i and then to 2 þ 4i.
                              We have
                                        ð  2þ4i  ð ð2;4Þ            ð  ð2;4Þ
                                            2             2              2  2
                                            z dz ¼   ðx þ iyÞ ðdx þ idyÞ¼  ðx   y þ 2ixyÞðdx þ idyÞ
                                         1þi      ð1;1Þ              ð1;1Þ
                                                 ð                    ð
                                                  ð2;4Þ  2  2          ð2;4Þ      2  2
                                                     ðx   y Þ dx   2xy dy þ i  2xy dx þðx   y Þ dy
                                               ¼
                                                  ð1;1                 ð1;1Þ
                           Method 1. (a) The points ð1; 1Þ and ð2; 4Þ correspond to t ¼ 1 and t ¼ 2, respectively.  Then the above
                           line integrals become
                                      ð 2                    ð  2                       86
                                             4
                                          2
                                                                    2
                                                                           2
                                                                              4
                                                      2
                                        fðt   t Þ dt   2ðtÞðt Þ2tdtgþ i  f2ðtÞðt Þ dt þðt   t Þð2tÞ dtg¼      6i
                                      t¼1                     t¼1                       3
                                                                        4   1
                                                                            ðx   1Þ or y ¼ 3x   2.  Then we find
                           (b) The line joining ð1; 1Þ and ð2; 4Þ has the equation y   1 ¼
                                                                        2   1
                                           2
                                          ð
                                                2       2
                                              ½x  ð3x   2Þ Š dx   2xð3x   2Þ3 dx
                                           x¼1
                                                  ð 2
                                                                  2        2   	   86
                                               þ i   2xð3x   2Þ dx þ½x  ð3x   2Þ Š3 dx ¼     6i
                                                  x¼1                               3
                           (c)  From 1 þ i to 2 þ i [or ð1; 1Þ to ð2; 1Þ], y ¼ 1; dy ¼ 0 and we have
                                                    ð 2          ð 2      4
                                                        2
                                                       ðx   1Þ dx þ i  2xdx ¼  þ 3i
                                                    x¼1           x¼1     3
                                  From 2 þ i to 2 þ 4i [or ð2; 1Þ to ð2; 4Þ], x ¼ 2; dx ¼ 0 and we have
                                                  ð 4        ð 4
                                                                    2
                                                      4ydy þ i  ð4   y Þ dy ¼ 30   9i
                                                   y¼1        y¼1
                                        4                  86
                                        3
                                  Adding, ð þ 3iÞþð 30   91Þ¼   3    6i.
                           Method 2. By the methods of Chapter 10 it is seen that the line integrals are independent of the path, thus
                           accounting for the same values obtained in (a), (b), and (c) above. In such case the integral can be evaluated
                           directly, as for real variables, as follows:
                                               2þ4i                            86

                                              ð         3 2þ4i     3       3
                                                  2    z      ð2 þ 4iÞ  ð1 þ iÞ
                                                                                   6i
                                                  z dz ¼     ¼              ¼
                                               1þi     3  1 i    3      3      3
                     16.11. (a) Prove Cauchy’s theorem:  If f ðzÞ is analytic inside and on a simple closed curve C, then
                           þ
                             f ðzÞ dz ¼ 0.
                            C
   407   408   409   410   411   412   413   414   415   416   417