Page 413 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 413

404                     FUNCTIONS OF A COMPLEX VARIABLE                   [CHAP. 16


                                                         ð
                                                          P 2
                          (b) Under these conditions prove that  f ðzÞ dz is independent of the path joining P 1 and P 2 .
                                                          P 1
                              þ        þ                þ           þ
                                                          udx   vdy þ i  vdx þ udy
                          ðaÞ   f ðzÞ dz ¼  ðu þ ivÞðdx þ idyÞ¼
                               C        C               C            C
                                 By Green’s theorem (Chapter 10),
                                                ðð                              ðð
                                     þ                              þ
                                                     @v  @u                        @u  @v
                                                            dx dy;                       dx dy
                                       udx   vdy ¼                    vdx þ udy ¼
                                     C               @x  @y          C             @x  @y
                                                 r                              r
                              where r is the region (simply-connected) bounded by C.
                                                  @u  @v @v   @u
                                 Since f ðzÞ is analytic,  ¼  ;  ¼   (Problem 16.7), and so the above integrals are zero.
                                                  @x  @y @x   @y
                                  þ
                              Then   f ðzÞ dz ¼ 0, assuming f ðzÞ [and thus the partial derivatives] to be continuous.
                                                     0
                                   C
                          (b) Consider any two paths joining points P 1 and P 2 (see Fig. 16-5).  By Cauchy’s theorem,
                                                             ð
                                                                f ðzÞ dz ¼ 0
                                                          P 1 AP 2 BP 1
                                                                                                    P 2
                                    ð         ð
                              Then               f ðzÞ dz ¼ 0
                                                                                   Path 1
                                       f ðzÞ dz þ
                                   P 1 AP 2  P 2 BP 1
                                                                                         A
                                  ð           ð          ð
                                                                                                     B
                              or     f ðzÞ dz ¼   f ðzÞ dz ¼  f ðzÞ dz
                                                                                               Path 2
                                 P 1 AP 2    P 2 BP 1  P 1 BP 2                P 1
                              i.e., the integral along P 1 AP 2 (path 1) ¼ integral along P 1 BP 2
                                                                                        Fig. 16-5
                              (path 2), and so the integral is independent of the path joining P 1
                              and P 2 .
                                                                          2
                                 This explains the results of Problem 16.10, since f ðzÞ¼ z is analytic.
                     16.12. If f ðzÞ is analytic within and on the boundary of a region bounded by two closed curves C 1 and C 2
                          (see Fig. 16-6), prove that
                                                     þ         þ
                                                                  f ðzÞ dz
                                                        f ðzÞ dz ¼
                                                      C 1       C 2
                              As in Fig. 16-6, construct line AB (called a cross-cut)connecting any point on C 2 and a point on C 1 .By
                          Cauchy’s theorem (Problem 16.11),
                                              ð
                                                   f ðzÞ dz ¼ 0
                                          AQPABRSTBA
                          since f ðzÞ is analytic within the region shaded and also on the
                          boundary. Then
                                ð         ð        ð         ð
                                                               f ðzÞ dz ¼ 0
                                   f ðzÞ dz þ  f ðzÞ dz þ  f ðzÞ dz þ   ð1Þ
                               AQPA      AB       BRSTB      BA
                               ð         ð
                          But   f ðzÞ dz ¼   f ðzÞ dz.  Hence, (1)gives
                                                                                       Fig. 16-6
                              AB         BA
                                                  ð            ð          ð
                                                                            f ðzÞ dz
                                                     f ðzÞ dz ¼   f ðzÞ dz ¼
                                                 AQPA        BRSTB      BTSRB
   408   409   410   411   412   413   414   415   416   417   418