Page 411 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 411

402                     FUNCTIONS OF A COMPLEX VARIABLE                   [CHAP. 16


                                           @u  @v     @v    @u
                          so that we must have    and        :
                                           @x  ¼  @y  @x  ¼  @y
                              Conversely, we can prove that if the first partial derivatives of u and v with respect to x and y are
                          continuous in a region, then the Cauchy–Riemann equations provide sufficient conditions for f ðzÞ to be
                          analytic.



                     16.8. (a)If f ðzÞ¼ uðx; yÞþ ivðx; yÞ is analytic in a region r, prove that the one parameter families of
                                                                                                      2
                          curves uðx; yÞ¼ C 1 and vðx; yÞ¼ C 2 are orthogonal families.  (b) Illustrate by using f ðzÞ¼ z .
                          (a) Consider any two particular members of these families uðx; yÞ¼ u 0 ; vðx; yÞ¼ v 0 which intersect at the
                              point ðx 0 ; y 0 Þ.
                                                              dy    u x
                                 Since du ¼ u x dx þ u y dy ¼ 0, we have  :
                                                              dx  ¼   u y
                                                           dy   v x
                                 Also since dv ¼ v x dx þ v y dy ¼ 0;  ¼   :          y
                                                           dx   v y
                                 When evaluated at ðx 0 ; y 0 Þ,these represent
                              respectively the slopes of the two curves at this
                              point of intersection.
                                 By  the  Cauchy–Riemann  equations,  u x ¼
                              v y ; u y ¼ v x ,we have the product of the slopes at
                              the point ðx 0 ; y 0 Þ equal to
                                                                                                      x

                                          u x   v x
                                                   ¼ 1

                                          u y   v y
                              so that any two members of the respective families
                              are orthogonal, and thus the two families are ortho-
                              gonal.
                                               2
                                                  2
                                     2
                          (b)If f ðzÞ¼ z ,then u ¼ x   y ; v ¼ 2xy.  The graphs
                                                    2
                                                2
                              of several members of x   y ¼ C 1 ,2xy ¼ C 2 are     Fig. 16-4
                              shown in Fig. 16-4.
                     16.9. In aerodynamics and fluid mechanics, the functions
                            and   in f ðzÞ¼   þ i , where f ðzÞ is analytic, are called the velocity potential and stream
                                                            2
                                                    2
                          function, respectively. If   ¼ x þ 4x   y þ 2y,(a) find   and  (b) find f ðzÞ.
                                                        @   @  @     @
                          (a)Bythe Cauchy-Riemann equations,  ¼  ;  ¼   .  Then
                                                        @x  @y  @x   @y
                                                      @               @
                                                         ¼ 2x þ 4        ¼ 2y   2
                                                       @y              @x
                                                   ð1Þ             ð2Þ
                              Method 1.  Integrating (1),   ¼ 2xy þ 4y þ FðxÞ.
                                       Integrating (2),   ¼ 2xy   2x þ Gð yÞ.
                              These are identical if FðxÞ¼  2x þ c; Gð yÞ¼ 4y þ c, where c is a real constant.  Thus,
                                ¼ 2xy þ 4y   2x þ c.
                              Method 2. Integrating (1),   ¼ 2xy þ 4y þ FðxÞ.  Then substituting in (2), 2y þ F ðxÞ¼ 2y   2or
                                                                                            0
                              F ðxÞ¼ 2 and FðxÞ¼  2x þ c.  Hence,   ¼ 2xy þ 4y   2x þ c.
                               0
                                                   2      2
                          ðaÞ  From ðaÞ; f ðzÞ¼   þ i  ¼ x þ 4x   y þ 2y þ ið2xy þ 4y   2x þ cÞ
                                             2  2                             2
                                          ¼ðx   y þ 2ixyÞþ 4ðx þ iyÞ  2iðx þ iyÞþ ic ¼ z þ 4z   2iz þ c 1
                              where c 1 is a pure imaginary constant.
   406   407   408   409   410   411   412   413   414   415   416