Page 410 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 410

CHAP. 16]               FUNCTIONS OF A COMPLEX VARIABLE                         401


                                             d       z þ  z     z z  x þ iy þ  x þ i  y   x þ iy
                                                 z z ¼ lim   ¼ lim
                                             dz   z!0    z      x!0      x þ i  y
                                                                y!0
                                                                               x   i  y
                                                ¼ lim  x   iy þ  x þ i  y  ðx   iyÞ  ¼ lim
                                                  x!0       x þ i  y        x!0  x þ i  y
                                                  y!0                       y!0
                                                           x
                              If  y ¼ 0, the required limit is  lim  ¼ 1:
                                                       x!0  x
                                                           i  y
                              If  x ¼ 0, the required limit is  lim  ¼ 1:
                                                       y!0 i  y
                              These two possible approaches show that the limit depends on the manner in which  z ! 0, so that the
                           derivative does not exist; i.e.,   z is nonanalytic anywhere.
                                                z

                                         1 þ z    dw
                                             , find  .(b) Determine where w is nonanalytic.
                                         1   z    dz
                     16.6. (a)If w ¼ f ðzÞ¼
                                                          1 þ z
                                               1 þðz þ  zÞ
                                       dw                  1   z          2
                              Method 1:   ¼ lim  1  ðz þ  zÞ  ¼ lim
                                        dz   z!0       z         z!0 ð1   z    zÞð1   zÞ
                           ðaÞ
                                              2
                                          ¼     2  provided z 6¼ 1, independent of the manner in which  z ! 0:
                                            ð1   zÞ
                              Method 2. The usual rules of differentiation apply provided z 6¼ 1.  Thus, by the quotient rule for
                              differentiation,
                                                  d            d

                                   d  1 þ z  ð1   zÞ dz  ð1 þ zÞ ð1 þ zÞ  dz  ð1   zÞ  ð1   zÞð1Þ ð1 þ zÞð 1Þ  2
                                  dz 1   z  ¼              2          ¼           2      ¼     2
                                                      ð1   zÞ                ð1   zÞ      ð1   zÞ
                           (b) The function is analytic everywhere except at z ¼ 1, where the derivative does not exist; i.e., the function
                              is nonanalytic at z ¼ 1.

                     16.7. Prove that a necessary condition for w ¼ f ðzÞ¼ uðx; yÞþ ivðx; yÞ to be analytic in a region is that
                                                     @u  @v @u    @v
                           the Cauchy-Riemann equations  ¼  ,  ¼    be satisfied in the region.
                                                     @x  @y @y    @x
                              Since f ðzÞ¼ f ðx þ iyÞ¼ uðx; yÞþ ivðx; yÞ,we have

                                     f ðz þ  zÞ¼ f ½x þ  x þ ið y þ  yފ ¼ uðx þ  x; y þ  yÞþ ivðx þ  x; y þ  yÞ
                           Then
                                  lim  f ðz þ  zÞ  f ðzÞ  ¼ lim  uðx þ  x; y þ  yÞ  uðx; yÞþ ifvðx þ  x; y þ  yÞ  vðx; yÞg
                                  z!0      z        x!0                  x þ i  y
                                                    y!0
                              If  y ¼ 0, the required limit is

                                                                                   @u  @v
                                          lim  uðx þ  x; yÞ  uðx; yÞ  þ i  vðx þ  x; yÞ  vðx; yÞ  þ i
                                          x!0        x                  x        ¼  @x  @x
                              If  x ¼ 0, the required limit is

                                                                                  1 @u  @v
                                          lim  uðx; y þ  yÞ  uðx; yÞ  þ  vðx; y þ  yÞ  vðx; yÞ  ¼  þ
                                          y!0       i  y               y          i @y  @y
                              If the derivative is to exist, these two special limits must be equal, i.e.,
                                                     @u  @v  1 @u  @v   @u  @v
                                                       þ i          ¼ i
                                                     @x  @x  ¼  i @y  þ  @y  @y  þ  @y
   405   406   407   408   409   410   411   412   413   414   415