Page 409 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 409

400                     FUNCTIONS OF A COMPLEX VARIABLE                   [CHAP. 16



                     16.3. Express each function in the form uðx; yÞþ ivðx; yÞ, where u and v are real:
                              3
                                                   3z
                          (a) z ;  ðbÞ 1=ð1   zÞ;  ðcÞ e ;  ðdÞ ln z.
                                          3
                                                                                2
                                                                 3
                                              3
                                                   2
                                                                          2
                                  3
                                                            2
                                                                     3
                              w ¼ z ¼ðx þ iyÞ ¼ x þ 3x ðiyÞþ 3xðiyÞ þðiyÞ ¼ x þ 3ix y   3xy   iy 2
                          ðaÞ
                                      3    2     2   3
                                   ¼ x   3xy þ ið3x y   y Þ
                                                                 3
                                                             2
                                             3
                                                   2
                                 Then uðx; yÞ¼ x   3xy ; vðx; yÞ¼ 3x y   y .
                                   1       1         1    1   x þ iy  1   x þ iy
                                 1   z  1  ðx þ iyÞ  1   x   iy 1   x þ iy  ð1   xÞ þ y 2
                          ðbÞ  w ¼   ¼          ¼                 ¼     2
                                               1   x              y
                                                                       :
                                 Then uðx; yÞ¼    2  2  ; vðx; yÞ¼  2  2
                                             ð1   xÞ þ y      ð1   xÞ þ y
                                                                           3x
                                          3x 3iy
                                                                                      3x
                               3z
                              e ¼ e 3ðxþiyÞ  ¼ e e  3x           and   u ¼ e cos 3y; v ¼ e sin 3y
                          ðcÞ                 ¼ e ðcos 3y þ i sin 3yÞ
                                                    q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                       i                         1
                                                       2
                                                          2
                              ln z ¼ lnð e Þ¼ ln   þ i  ¼ ln x þ y þ i tan  y=x and
                          ðdÞ
                                                           2
                                                              2
                                                    u ¼ lnðx þ y Þ;  v ¼ tan  1  y=x
                                                       1
                                                       2
                                 Note that ln z is a multiple-valued function (in this case it is infinitely many-valued), since   can be
                              increased by any multiple of 2 . The principal value of the logarithm is defined as that value for which
                              0 @  < 2  and is called the principal branch of ln z.
                     16.4. Prove  (a) sinðx þ iyÞ¼ sin x cosh y þ i cos x sinh y
                                 (b) cosðx þ iyÞ¼ cos x cosh y   i sin x sinh y.
                                              ix
                              We use the relations e ¼ cos z þ i sin z; e  ix  ¼ cos z   i sin z, from which
                                                         iz
                                                                         iz
                                                        e   e  iz       e þ e  iz
                                                               ;
                                                   sin z ¼         cos z ¼
                                                           2i              2
                                              e iðxþiyÞ    e  iðxþiyÞ  e ix y    e  ixþy
                          Then sin z ¼ sinðx þ iyÞ¼        ¼
                                                    2i          2i
                                                                            y
                                                                                           y
                                     1   y             y                   e þ e  y        e   e  y
                                     2i                                      2              2
                                   ¼  fe ðcos x þ i sin xÞ  e ðcos x   i sin xÞg ¼ ðsin xÞ  þ iðcos xÞ
                                   ¼ sin x cosh y þ i cos x sinh y
                                                     e iðxþiyÞ  þ e  iðxþiyÞ
                                                          2
                              Similarly, cos z ¼ cosðx þ iyÞ¼
                                           1
                                         ¼ fe ix y  þ e  ixþy  1   y      y
                                                         2
                                           2          g¼ fe ðcos x þ i sin xÞþ e ðcos x   i sin xÞg
                                                   y   y          y   y
                                                 e þ e          e   e
                                                                       ¼ cos x cosh y   i sin x sinh y
                                         ¼ðcos xÞ         iðsin xÞ
                                                   2              2
                     DERIVATIVES, CAUCHY-RIEMANN EQUATIONS
                                    d
                     16.5. Prove that    z z, where   z is the conjugate of z, does not exist anywhere.
                                             z
                                    dz
                                         d
                              By definition,  f ðzÞ¼ lim  f ðz þ  zÞ  f ðzÞ  if this limit exists independent of the manner in which
                                        dz      z!0      z
                           z ¼  x þ i  y approaches zero.  Then
   404   405   406   407   408   409   410   411   412   413   414