Page 408 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 408

CHAP. 16]               FUNCTIONS OF A COMPLEX VARIABLE                         399

                                                     Solved Problems


                     FUNCTIONS, LIMITS, CONTINUITY

                     16.1. Determine the locus represented by
                           (a) jz   2j¼ 3;  ðbÞjz   2j¼jz þ 4j;  ðcÞjz   3jþ jz þ 3j¼ 10.

                                                                 q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                          2
                                                                                      2
                                                                        2
                                                                           2
                                                                   ðx   2Þ þ y ¼ 3or ðx   2Þ þ y ¼ 9, a circle with
                           (a) Method 1: jz   2j¼ jx þ iy   2j¼jx   2 þ iyj¼
                              center at ð2; 0Þ and radius 3.
                              Method 2: jz   2j is the distance between the complex numbers z ¼ x þ iy and 2 þ 0i.If thisdistance is
                              always 3, the locus is a circle of radius 3 with center at 2 þ 0i or ð2; 0Þ.
                                                           q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                 2
                                                                              2
                                                                 2
                                                                    2
                           (b) Method 1: jx þ iy   2j¼jx þ iy þ 4j or  ðx   2Þ þ y ¼  ðx þ 4Þ þ y . Squaring, we find x ¼ 1, a
                              straight line.
                              Method 2: The locus is such that the distance from any point on it to ð2; 0Þ and ð 4; 0Þ are equal. Thus,
                              the locus is the perpendicular besector of the line joining ð2; 0Þ and ð 4; 0Þ,or x ¼ 1.
                                                         q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                              2
                                                                2
                                                                            2
                                                                                2
                                                                   2
                                                                                                  2
                           (c)  Method 2: The locus is given by  ðx   3Þ þ y þ  ðx þ 3Þ þ y ¼ 10 or  ðx   3Þ þ y ¼ 10
                              q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi             q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                    2
                                                                              2
                                                                                 2
                                        2
                                ðx þ 3Þ þ y .  Squaring and simplifying, 25 þ 3x ¼ 5 ðx þ 3Þ þ y .  Squaring and simplifying
                                       x 2  y 2
                              again yields  þ  ¼ 1, an ellipse with semi-major and semi-minor axes of lengths 5 and 4, respec-
                                       25  16
                              tively.
                              Method 2: The locus is such that the sum of the distances from any point on it to ð3; 0Þ and ð 3; 0Þ is 10.
                              Thus the locus is an ellipse whose foci are at ð 3; 0Þ and ð3; 0Þ and whose major axis has length 10.
                     16.2. Determine the region in the z plane represented by each of the following.
                           (a) jzj < 1.
                                  Interior of a circle of radius 1.  See Fig. 16-3(a)below.
                           (b)1 < jz þ 2ij @ 2.
                                  jz þ 2ij is the distance from z to  2i,sothat jz þ 2ij¼ 1isa circle of radius 1 with center at  2i,
                              i.e., ð0;  2Þ; and jz þ 2ij¼ 2isa circle of radius 2 with center at  2i. Then 1 < jz þ 2ij @ 2 represents
                              the region exterior to jz þ 2ij¼ 1 but interior to or on jz þ 2ij¼ 2.  See Fig. 16-3(b)below.
                           (c)  =3 @ arg z @  =2.
                                                         i
                                  Note that arg z ¼  , where z ¼  e . The required region is the infinite region bounded by the lines
                                ¼  =3 and   ¼  =2, including these lines.  See Fig. 16-3(c)below.











                                                              Fig. 16-3
   403   404   405   406   407   408   409   410   411   412   413