Page 415 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 415

406                     FUNCTIONS OF A COMPLEX VARIABLE                   [CHAP. 16


                                                   1  þ  cos z
                          (a)Since z ¼   lies within C,    dz ¼ cos   ¼ 1byProblem 16.15 with f ðzÞ¼ cos z, a ¼  .
                                     cos z
                                  þ               2 i  C z
                              Then       dz ¼ 2 i.
                                   C z
                                               e          z 1   1        e        e
                                           þ    z      þ               þ  z    þ   z
                                                         e                           dz
                          ðbÞ                      dz ¼     z     z þ 1  dz ¼  dz    C z þ 1
                                            C zðz þ 1Þ  C               C z
                                                                           1
                                                          0
                                                     ¼ 2 ie   2 ie  1  ¼ 2 ið1   e Þ
                              by Problem 16.15, since z ¼ 0 and z ¼ 1are both interior to C.
                                    5z   3z þ 2
                                  þ   2
                     16.17. Evaluate           dz where C is any simple closed curve enclosing z ¼ 1.
                                           3
                                   C  ðz   1Þ
                                                                 n!  þ
                          Method 1.  By Cauchy’s integral formula, f  ðnÞ  f ðzÞ  dz.
                                                                          nþ1
                                                            ðaÞ¼
                                                                2 i C ðz   aÞ
                                              2
                              If n ¼ 2 and f ðzÞ¼ 5z   3z þ 2, then f ð1Þ¼ 10.  Hence,
                                                           00
                                                    2
                                                                         2
                                              2!  þ  5z   3z þ 2      þ  5z   3z þ 2
                                                            dz   or              dz ¼ 10 i
                                              2 i  C  ðz   1Þ         C  ðz   1Þ
                                          10 ¼           3                    3
                                     2
                                                    2
                          Method 2.  5z   3z þ 2 ¼ 5ðz   1Þ þ 7ðz   1Þþ 4.  Then
                                     5z   3z þ 2    5ðz   1Þ þ 7ðz   1Þþ 4
                                   þ   2          þ       2
                                                                      dz
                                            3  dz ¼            3
                                    C  ðz   1Þ     C      ðz   1Þ
                                                       d        dz         dz
                                                    þ       þ          þ
                                                 ¼ 5      þ 7       þ 4        ¼ 5ð2 iÞþ 7ð0Þþ 4ð0Þ
                                                    C z   1  C ðz   1Þ 2  C ðz   1Þ 3
                                                 ¼ 10 i
                          by Problem 16.13.
                     SERIES AND SINGULARITIES
                     16.18. For what values of z does each series converge?
                               1   n                    n
                              X   z                    z
                                     :                    : Then
                                 n 2                  n 2
                          ðaÞ     2  n  The nth term ¼ u n ¼  2  n
                               n¼1

                                                                  nþ1    2
                                                                 z         n
                                                                               jzj
                                                  lim     u nþ1         n 2
                                                           ¼ lim    2  nþ1     n    ¼
                                                  n!1 u n  n!1 ðn þ 1Þ 2       2
                                                                         z

                                 By the ratio test the series converges if jzj < 2 and diverges if jzj > 2. If jzj¼ 2the ratio test fails.
                                                                    n        n

                                                                1        1                          1
                                                                        X  jzj                     X  1
                                                               X
                                                                   z
                                 However, the series of absolute values        ¼  converges if jzj¼ 2, since
                                                                            2
                                                                   2
                                                                    n 2 n   n 2 n                     n 2
                                                               n¼1      n¼1                        n¼1
                              converges.
                                 Thus, the series converges (absolutely) for jzj @ 2, i.e., at all points inside and on the circle jzj¼ 2.
                                    n 1 2n 1    3  5
                               1
                              X        z       z   z
                                                           :  We have
                                 ð 1Þ
                                   ð2n   1Þ!   3!  5!
                          ðbÞ              ¼ z    þ
                               n¼1

                                                         n 2nþ1                   2
                                                       ð 1Þ z                    z

                                         lim     u nþ1          ð2n   1Þ!              ¼ 0

                                                  n!1 ð2n þ 1Þ!
                                                                    z
                                                  ¼ lim                   ¼ lim
                                         n!1 u n                  n 1 2n 1    n!1 2nð2n þ 1Þ

                                                              ð 1Þ
                                 Then the series, which represents sin z,converges for all values of z.
   410   411   412   413   414   415   416   417   418   419   420