Page 420 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 420

CHAP. 16]               FUNCTIONS OF A COMPLEX VARIABLE                         411


                           (d)cot z; z ¼ 5 ,a pole of order 1.  Then:

                                                       cos z     z   5                  1
                                    Residue is  lim ðz   5 Þ   ¼  lim   lim cos z ¼  lim   ð 1Þ
                                            z!5        sin z  z!5  sin z  z!5      z!5  cos z
                                                          ¼ð 1Þð 1Þ¼ 1
                              where we have used L’Hospital’s rule, which can be shown applicable for functions of a complex
                              variable.



                     16.25. If f ðzÞ is analytic within and on a simple closed curve C except at a number of poles a; b; c; ...
                           interior to C, prove that
                                        þ
                                           f ðzÞ dz ¼ 2 i fsum of residues of f ðzÞ at poles a; b; c; etc.g
                                         C
                           Refer to Fig. 16-8.
                              By reasoning similar to that of Problem 16.12 (i.e., by con-
                           structing cross cuts from C to C 1 ; C 2 ; C 3 ; etc.), we have
                                    þ        þ        þ
                                      f ðzÞ dz ¼  f ðzÞ dz þ  f ðzÞ dz þ
                                     C        C 1      C 2
                              For pole a,                                              Fig. 16-8
                                      a  m        a  1
                                f ðzÞ¼   m  þ     þ  þ a 0 þ a 1 ðz   aÞþ
                                     ðz   aÞ    ðz   aÞ
                                                þ
                           hence, as in Problem 16.23,  f ðzÞ dz ¼ 2 ia  1 :
                                                 C 1

                                                    b  n       b  1
                              Similarly for pole b; f ðzÞ¼  n  þ     þ  þ b 0 þ b 1 ðz   bÞþ
                                                  ðz   bÞ     ðz   bÞ
                                                          þ
                           so that                          f ðzÞ dz ¼ 2 ib  1
                                                           C 2
                              Continuing in this manner, we see that
                                             þ
                                               f ðzÞ dz ¼ 2 iða  1 þ b  1 þ     Þ ¼ 2 i (sum of residues)
                                              C



                                        e dz
                                  þ      z
                     16.26. Evaluate            where C is given by (a) jzj¼ 3=2;  ðbÞjzj¼ 10.
                                               2
                                   C ðz   1Þðz þ 3Þ
                                                                    z
                                                                    e        e
                              Residue at simple pole z ¼ 1is lim ðz   1Þ  2  ¼
                                                       z!1                   16
                                                               ðz   1Þðz þ 3Þ
                              Residue at double pole z ¼ 3is
                                                                             z
                                              d            e z          ðz   1Þe   e z   5e  3
                                           lim        2           ¼ lim
                                          z! 3 dz  ðz þ 3Þ      2   z! 3       2  ¼  16
                                                       ðz   1Þðz þ 3Þ     ðz   1Þ
                           (a)Since jzj¼ 3=2encloses only the pole z ¼ 1,
                                                                        e    ie

                                                    the required integral ¼ 2 i  ¼
                                                                        16   8
   415   416   417   418   419   420   421   422   423   424   425