Page 417 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 417

408                     FUNCTIONS OF A COMPLEX VARIABLE                   [CHAP. 16


                                                                2        3
                                                               h        h
                                                          0       00       000
                                                               2!       3!
                                          f ða þ hÞ¼ f ðaÞþ hf ðaÞþ  f ðaÞþ  f ðaÞþ
                              By Cauchy’s integral formula (Problem 16.15), we have
                                                                1  þ  f ðzÞ dz
                                                       f ða þ hÞ¼                                    ð1Þ
                                                               2 i C z   a   h
                              By division
                                       1            1
                                    z   a   h  ¼  ðz   aÞ½1   h=ðz   aފ
                                                  (                                         )
                                               1        h      h 2        h n       h nþ1
                                                                 2
                                           ¼       1 þ     þ      þ     þ    n  þ   n                ð2Þ
                                             ðz   aÞ  ðz   aÞ           ðz   aÞ  ðz   aÞ ðz   a   hÞ
                                                             ðz   aÞ
                              Substituting (2)in(1) and using Cauchy’s integral formulas, we have
                                                1  þ  f ðzÞ dz  h  þ  f ðzÞ dz  h n þ  f ðzÞ dz
                                                                                       þ R n
                                                2 i C z   a  2 i C ðz   aÞ  2 i C ðz   aÞ
                                        f ða þ hÞ¼       þ          2  þ     þ      nþ1
                                                           h 2         h n
                                                      0       00         f  ðnÞ
                                                           2!          n!
                                              ¼ f ðaÞþ hf ðaÞþ  f ðaÞþ     þ  ðaÞþ R n
                                                         h nþ1 þ   f ðzÞ dz
                          where                      R n ¼
                                                         2 i       nþ1
                                                             C ðz   aÞ  ðz   a   hÞ


                              Now when z is on C,     f ðzÞ     @ M and jz   aj¼ R,sothat by (4), Page 394, we have, since 2 R is
                                                z   a   h
                          the length of C
                                                                 nþ1 M
                                                         jR n j @  jhj    2 R
                                                               2 R nþ1
                          As n !1; jR n j! 0.  Then R n ! 0and the required result follows.
                              If f ðzÞ is analytic in an annular region r 1 @ jz   aj @ r 2 ,wecan generalize the Taylor series to a
                          Laurent series (see Problem 16.92).  In some cases, as shown in Problem 16.22, the Laurent series can be
                          obtained by use of known Taylor series.


                     16.22. Find Laurent series about the indicated singularity for each of the following functions. Name the
                          singularity in each case and give the region of convergence of each series.
                                e z
                                    ; z ¼ 1:  Let z   1 ¼ u:  Then z ¼ 1 þ u and
                                   2
                          ðaÞ
                              ðz   1Þ
                                                                (                   )
                                              e z   e 1þu  e u  e      u 2  u 3  u 4
                                                 2  ¼  u 2  ¼ e    u 2  ¼  u 2  1 þ u þ  2!  þ  3!  þ  4!  þ
                                            ðz   1Þ
                                                      e      e   e  eðz   1Þ  eðz   1Þ 2
                                                        2  z   1  2!  3!      4!
                                                  ¼      þ     þ  þ       þ       þ
                                                    ðz   1Þ
                                 z ¼ 1isa pole of order 2,or double pole.
                                 The series converges for all values of z 6¼ 1.
                                  1
                              z cos  ; z ¼ 0:
                          ðbÞ
                                  z

                                           1        1    1    1            1   1    1
                                       z cos  ¼ z 1    þ        þ      ¼ z    þ        þ
                                           z       2! z 2  4! z 4  6! z 6  2! z  4! z 3  6! z 5
                                 z ¼ 0isan essential singularity.
                                 The series converges for all values of z 6¼ 0.
   412   413   414   415   416   417   418   419   420   421   422