Page 418 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 418

CHAP. 16]               FUNCTIONS OF A COMPLEX VARIABLE                         409

                               sin z
                                  ; z ¼  :  Let z     ¼ u:  Then z ¼   þ u and
                              z
                           ðcÞ
                                                                                  !
                                            sin z  sinðu þ  Þ  sin u  1  u 3  u 5
                                            z      ¼  u  ¼    u  ¼  u  u    3!  þ  5!
                                                      u 2  u 4       ðz    Þ 2  ðz    Þ 4
                                                      3!  5!           3!      5!
                                                ¼ 1 þ      þ     ¼  1 þ            þ
                                  z ¼   is a removable singularity.
                                  The series converges for all values of z.
                                   z
                                        ; z ¼ 1:   Let z þ 1 ¼ u.  Then
                           ðdÞ
                               ðz þ 1Þðz þ 2Þ
                                                z       u   1  u   1      2   3  4
                                                      ¼      ¼     ð1   u þ u   u þ u      Þ
                                                                 u
                                            ðz þ 1Þðz þ 2Þ  uðu þ 1Þ
                                                         1          2   3
                                                      ¼  þ 2   2u þ 2u   2u þ
                                                         u
                                                          1                   2
                                                      ¼      þ 2   2ðz þ 1Þþ 2ðz þ 1Þ
                                                         z þ 1
                                  z ¼ 1isa pole of order 1,or simple pole.
                                  The series converges for values of z such that 0 < jz þ 1j < 1.
                                 1
                                     ; z ¼ 0;  2:
                                    3
                           ðeÞ
                              zðz þ 2Þ
                              Case 1, z ¼ 0.  Using the binomial theorem,
                                                               z
                                     1        1      1             ð 3Þð 4Þ z 2  ð 3Þð 4Þð 5Þ z 3


                                       3  ¼       3  ¼  8z  1 þð 3Þ  2  þ  2!  2  þ  3!  2  þ
                                  zðz þ 2Þ  8zð1 þ z=2Þ
                                           1  3   3    5  2
                                         ¼      þ   z    z þ
                                          8z  16  16  32
                                  z ¼ 0is a pole of order 1,or simple pole.
                                  The series converges for 0 < jzj < 2.
                              Case 2, z ¼ 2.  Let z þ 2 ¼ u.  Then
                                                                             u 2    3    4
                                       1        1         1         1     u       u    u
                                          3  ¼  ðu   2Þu 3  ¼  3  ¼  2u 3  1 þ þ  2  þ  2  þ  2  þ
                                                                          2
                                    zðz þ 2Þ          2u ð1   u=2Þ
                                               1    1   1  1   1
                                              2u   4u  8u  16  32
                                           ¼    3     2           u
                                                 1       1       1     1   1
                                                    3       2         16  32
                                           ¼                                ðz þ 2Þ
                                                               8ðz þ 2Þ
                                              2ðz þ 2Þ  4ðz þ 2Þ
                                  z ¼ 2isa pole of order 3.
                                  The series converges for 0 < jz þ 2j < 2.
                     RESIDUES AND THE RESIDUE THEOREM
                     16.23. Suppose f ðzÞ is analytic everywhere inside and on a simple closed curve C except at z ¼ a which is
                           a pole of order n. Then
                                              a  n    a  nþ1                          2
                                       f ðzÞ¼    n  þ    n 1  þ     þ a 0 þ a 1 ðz   aÞþ a 2 ðz   aÞ þ
                                            ðz   aÞ
                                                    ðz   aÞ
                           where a  n 6¼ 0. Prove that
   413   414   415   416   417   418   419   420   421   422   423