Page 430 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 430

CHAP. 16]               FUNCTIONS OF A COMPLEX VARIABLE                         421

                                     1       7      9  9ðz   1Þ
                                                             þ     ; double pole, 0 < jz   1j < 4
                                        2          64   256
                               ðcÞ       þ       þ
                                           16ðz   1Þ
                                  4ðz   1Þ
                     RESIDUES AND THE RESIDUE THEOREM
                     16.63. Determine the residues of each function at its poles:
                              2z þ 3     z   3       e zt         z
                              z   4     z þ 5z                  2
                           ðaÞ  2  ;  ðbÞ  3  2  ;  ðcÞ  3  ;  ðdÞ  2  :
                                                    ðz   2Þ    ðz þ 1Þ
                                                                   1 2 2t
                           Ans.  (a) z ¼ 2; 7=4; z ¼ 2; 1=4  (c) z ¼ 2; t e
                                                                   2
                               (b) z ¼ 0; 8=25; z ¼ 5;  8=25  (d) z ¼ i; 0; z ¼ i; 0
                                          zt
                     16.64. Find the residue of e tan z at the simple pole z ¼ 3 =2.
                           Ans:    e 3 t=2
                                       z dz
                                 þ     2
                     16.65. Evaluate         , where C is a simple closed curve enclosing all the poles.
                                  C ðz þ 1Þðz þ 3Þ
                           Ans:    8 i

                     16.66. If C is a simple closed curve enclosing z ¼ i,show that
                                                            ze       1
                                                         þ    zt
                                                                 dz ¼ t sin t
                                                            2   2    2
                                                         C ðz þ 1Þ
                     16.67. If f ðzÞ¼ PðzÞ=QðzÞ, where PðzÞ and QðzÞ are polynomials such that the degree of PðzÞ is at least two less than
                                                 þ
                           the degree of QðzÞ,prove that  f ðzÞ dz ¼ 0, where C encloses all the poles of f ðzÞ.
                                                  C
                     EVALUATION OF DEFINITE INTEGRALS
                     Use contour integration to verify each of the following
                           ð  2                                       ð 2           p ffiffiffi
                            1  x dx                                         d      4  3
                     16.68.       ¼ p ffiffiffi                     16.75.             ¼
                              4
                           0 x þ 1  2 2                                0 ð2 þ cos  Þ 2  9
                           ð                                          ð     2
                                dx    2                                   sin
                            1
                     16.69.    6  6  ¼  5 ;  a > 0            16.76.            d  ¼
                            1 x þ a  3a                                0 5   4cos    8
                               dx                                           d       3
                           ð                                          ð 2
                            1
                     16.70.                                   16.77.
                               2   2  ¼  32                                   2  2  ¼ p ffiffiffi
                                                                                   2 2
                           0 ðx þ 4Þ                                   0 ð1 þ sin  Þ
                                                                            cos n  d
                                                                      ð 2
                           ð  p ffiffiffi                                                 2  ¼
                            1   x                                      0 1   2a cos   þ a
                     16.71.       dx ¼                        16.78.
                              3
                           0 x þ 1    3                                2 a n
                                                                      1   a 2  ;  n ¼ 0; 1; 2; 3; .. . ;  0 < a < 1
                           ð                                          ð 2             2  2
                            1   dx     3                                    d       ð2a þ b Þ
                                            7
                     16.72.         ¼ p a ;    a > 0          16.79.                        ;
                                        ffiffiffi
                               4  4 2  8 2                                       3  ¼  2  2 5=2  a > jbj
                           0 ðx þ a Þ                                  0 ða þ b cos  Þ  ða   b Þ
                           ð                                          ð              4
                                   dx                                   x sin 2x   e
                            1                                          1
                     16.73.                                   16.80.
                               2   2  2   ¼  9                            2   dx ¼  4
                            1 ðx þ 1Þ ðx þ 4Þ                          0 x þ 4
                           ð  2   d   2                               ð  1  cos 2 x   e
                     16.74.         ¼ p ffiffiffi                   16.81.          dx ¼
                           0 2   cos    3                              0 x þ 4     8
                                                                          4
   425   426   427   428   429   430   431   432   433   434   435