Page 432 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 432

CHAP. 16]               FUNCTIONS OF A COMPLEX VARIABLE                         423

                                    1  1   1  1  1     z  z 2  z 3
                           Ans:          þ     þ    þ 1   þ     þ
                                    z 5  z 4  z 3  z 2  z  2  4  8
                             ð
                              1
                     16.94. Let  e  st FðtÞ dt ¼ f ðsÞ where f ðsÞ is a given rational function with numerator of degree less than that of the
                              0
                           denominator.  If C is a simple closed curve enclosing all the poles of f ðsÞ,we can show that
                                                1  þ
                                                                            zt
                                                     zt
                                                    e f ðzÞ dz ¼ sum of residues of e f ðzÞ at its poles
                                          FðtÞ¼
                                               2 i C
                                                                                    2
                                                            s           1          s þ 1         1
                           Use this result to find FðtÞ if f ðsÞ is  (a)  ;  ðbÞ  ;  ðcÞ  ;  ðdÞ      and
                                                           2
                                                                     2
                                                          s þ 1      s þ 2s þ 5        2       2   2
                                                                                  sðs   1Þ    ðs þ 1Þ
                           check results in each case.
                           [Note that f ðsÞ is the Laplace transform of FðtÞ, and FðtÞ is the inverse Laplace transform of f ðsÞ (see Chapter
                           12).  Extensions to other functions f ðxÞ are possible.]
                                                            2t
                                                               3 2t
                                                          5
                           Ans.  (a)cos t;  1  t       1  þ te þ e ;    1
                                            e sin 2t;
                                           2        ðcÞ  4  2  4    ðdÞ  2  ðsin t   t cos tÞ
                                        ðbÞ
   427   428   429   430   431   432   433   434   435   436   437