Page 53 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 53

44                      FUNCTIONS, LIMITS, AND CONTINUITY                  [CHAP. 3



                        Note the analogy with real numbers, polynomials corresponding to integers, rational functions to
                     rational numbers, and so on.



                     TRANSCENDENTAL FUNCTIONS
                        The following are sometimes called elementary transcendental functions.

                                                     x
                        1.  Exponential function:  f ðxÞ¼ a , a 6¼ 0; 1.  For properties, see Page 3.
                        2.  Logarithmic function:  f ðxÞ¼ log x, a 6¼ 0; 1.  This and the exponential function are inverse
                                                       a
                            functions.  If a ¼ e ¼ 2:71828 ... ; called the natural base of logarithms,we write
                            f ðxÞ¼ log x ¼ ln x, called the natural logarithm of x.  For properties, see Page 4.
                                    e
                        3.  Trigonometric functions  (Also called circular functions because of their geometric interpreta-
                            tion with respect to the unit circle):
                                                   sin x        1          1          1    cos x
                                                   cos x       sin x      cos x      tan x  sin x
                                    sin x; cos x; tan x ¼  ; csc x ¼  ; sec x ¼  ; cot x ¼  ¼
                               The variable x is generally expressed in radians (  radians ¼ 1808). For real values of x,
                            sin x and cos x lie between  1and 1 inclusive.
                               The following are some properties of these functions:
                                                                          2
                                                                                 2
                                  2
                                                               2
                                                        2
                                         2
                                sin x þ cos x ¼ 1  1 þ tan x ¼ sec x  1 þ cot x ¼ csc x
                                sinðx   yÞ¼ sin x cos y   cos x sin y  sinð xÞ¼  sin x
                                cosðx   yÞ¼ cos x cos y   sin x sin y  cosð xÞ¼ cos x
                                           tan x   tan y
                                                                    tanð xÞ¼   tan x
                                          1   tan x tan y
                                tanðx   yÞ¼
                        4.  Inverse trigonometric functions. The following is a list of the inverse trigonometric functions
                            and their principal values:
                            ðaÞ y ¼ sin  1  x; ð  =2 @ y @  =2Þ  ðdÞ y ¼ csc  1  x ¼ sin  1  1=x; ð  =2 @ y @  =2Þ
                            ðbÞ y ¼ cos  1  x; ð0 @ y @  Þ       ðeÞ  y ¼ sec  1  x ¼ cos  1  1=x; ð0 @ y @  Þ
                            ðcÞ y ¼ tan  1  x; ð  =2 < y < =2Þ  ð f Þ y ¼ cot  1  x ¼  =2   tan  1  x; ð0 < y < Þ
                        5.  Hyperbolic functions are defined in terms of exponential functions as follows. These functions
                            may be interpreted geometrically, much as the trigonometric functions but with respect to the
                            unit hyperbola.
                                        x
                                       e   e  x                              1       2
                                          2                                 sinh x  e   e
                            ðaÞ  sinh x ¼                       ðdÞ  csch x ¼    ¼  x   x
                                        x
                                       e þ e  x                               1       2
                                          2                                 cosh x  e þ e
                            ðbÞ  cosh x ¼                        ðeÞ  sech x ¼   ¼  x    x
                                               x
                                                                                     x
                                       sinh x  e   e  x                      cosh x  e þ e  x
                            ðcÞ  tanh x ¼    ¼  x   x            ð f Þ  coth x ¼  ¼  x    x
                                       cosh x  e þ e                         sinh x  e   e
                               The following are some properties of these functions:
                                                                   2
                                                           2
                                                                                       2
                                                                            2
                                           2
                                   2
                                cosh x   sinh x ¼ 1  1   tanh x ¼ sech x  coth x   1 ¼ csch x
                                sinhðx   yÞ¼ sinh x cosh y   cosh x sinh y  sinhð xÞ¼  sinh x
                                coshðx   yÞ¼ cosh x cosh y   sinh x sinh y  coshð xÞ¼ cosh x
                                            tanh x   tanh y
                                                                         tanhð xÞ¼  tanh x
                                tanhðx   yÞ¼
                                           1   tanh x tanh y
   48   49   50   51   52   53   54   55   56   57   58