Page 71 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 71

62                      FUNCTIONS, LIMITS, AND CONTINUITY                  [CHAP. 3


                                                          cos x
                     3.60.  Prove that  (a) lim 10  x  ¼ 0;  lim  ¼ 0:
                                                   ðbÞ
                                                      x! 1 x þ
                                      x!1
                     3.61.  Explain why  (a) lim sin x does not exist,  (b) lim e  x  sin x does not exist.
                                        x!1                   x!1
                     3.62.  If f ðxÞ¼  3x þjxj  ,evaluate  (a) lim f ðxÞ;  ðbÞ  lim f ðxÞ;  ðcÞ  lim f ðxÞ;  ðdÞ  lim f ðxÞ;
                                                   x!1         x! 1         x!0þ         x!0
                                 7x   5jxj
                          ðeÞ lim f ðxÞ.
                              x!0
                          Ans.(a)2,  (b)1/6, (c)2,  (d)1/6,  (e) does not exist.
                     3.63.  If ½xм largest integer @ x,evaluate  (a) lim fx  ½xŠg;  ðbÞ  lim fx  ½xŠg.
                          Ans.(a)0,  (b)1                x!2þ           x!2

                                                               2
                                                           2
                                                                        3
                                                                                A.
                     3.64.  If lim f ðxÞ¼ A,prove that (a) lim f f ðxÞg ¼ A ,  (b) lim  p ffiffiffiffiffiffiffiffiffi  p 3  ffiffiffiffi
                                                                         f ðxÞ ¼
                            x!x 0                  x!x 0            x!x 0
                          What generalizations of these do you suspect are true?  Can you prove them?
                     3.65.  If lim f ðxÞ¼ A and lim gðxÞ¼ B,prove that
                            x!x 0         x!x 0
                               lim f f ðxÞ  gðxÞg ¼ A   B;  ðbÞ lim faf ðxÞþ bgðxÞg ¼ aA þ bB where a; b ¼ any constants.
                          ðaÞ
                              x!x 0                    x!x 0
                     3.66.  If the limits of f ðxÞ, gðxÞ; and hðxÞ are A, B; and C respectively, prove that:
                          (a) lim f f ðxÞþ gðxÞþ hðxÞg ¼ A þ B þ C,  (b) lim f ðxÞgðxÞhðxÞ¼ ABC.  Generalize these results.
                             x!x 0                           x!x 0
                     3.67.  Evaluate each of the following using the theorems on limits.
                                  (     2                )
                                      2x   1      2   3x
                               lim                               Ans:  ðaÞ  8=21
                          ðaÞ                     2
                                                 x   5x þ 3
                              x!1=2 ð3x þ 2Þð5x   3Þ
                               lim  ð3x   1Þð2x þ 3Þ                  ðbÞ 3=10
                          ðbÞ  x!1 ð5x   3Þð4x þ 5Þ
                                    3x    2x

                               lim                                    ðcÞ 1
                              x! 1 x   1  x þ 1
                          ðcÞ
                                   1     1    2x
                               lim                                    ðdÞ 1=32
                              x!1 x   1 x þ 3  3x þ 5
                          ðdÞ
                                    3  8 þ h   2
                                    p ffiffiffiffiffiffiffiffiffiffiffi
                                                             3
                     3.68.  Evaluate lim    .  (Hint: Let 8 þ h ¼ x Þ. Ans.  1/12
                                 h!0    h
                                                                              A
                     3.69.  If lim f ðxÞ¼ A and lim gðxÞ¼ B 6¼ 0, prove directly that lim  f ðxÞ  ¼ .
                            x!x 0         x!x 0                      x!x 0 gðxÞ  B
                                  sin x
                     3.70.  Given lim  ¼ 1, evaluate:
                               x!0 x
                                 sin 3x          1   cos x          6x   sin 2x         1   2cos x þ cos 2x
                              lim          ðcÞ lim            ðeÞ lim             ðgÞ lim
                          ðaÞ                        2                                         2
                              x!0  x          x!0   x            x!0 2x þ 3 sin 4x   x!0      x
                                 1   cos x                          cos ax   cos bx     3 sin  x   sin 3 x
                              lim          ðdÞ limðx   3Þ csc  x  ð f Þ lim       ðhÞ lim
                          ðbÞ                                            2                    3
                              x!0   x         x!3                x!0    x            x!1      x
                                                                       2
                                                                           2
                          Ans.(a)3,  (b)0,  (c)1/2,  (d)  1= ,  (e)2/7, ( f )  1 ðb   a Þ,  (g)  1,  (h)4  3
                                                                     2
                                x
                               e   1
                     3.71.  If lim  ¼ 1, prove that:
                            x!0  x
                                                          x
                                 e  ax    e  bx          a   b x  a                 tanh ax
                              lim         ¼ b   a;  ðbÞ lim    ¼ ln ; a; b > 0;  ðcÞ lim  ¼ a:
                          ðaÞ
                              x!0    x                x!0  x      b               x!0  x
   66   67   68   69   70   71   72   73   74   75   76