Page 70 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 70

CHAP. 3]                FUNCTIONS, LIMITS, AND CONTINUITY                        61


                     3.46.  (a)Prove that tan  1  x þ cot  1  x ¼  =2ifthe conventional principal values on Page 44 are taken.  (b)Is
                                     1
                           tan  1  x þ tan ð1=xÞ¼  =2also?  Explain.

                                                            x þ y
                     3.47.  If f ðxÞ¼ tan  1  x,prove that f ðxÞþ f ðyÞ¼ f  ,discussing the case xy ¼ 1.
                                                           1   xy
                     3.48.  Prove that tan  1  a   tan  1  b ¼ cot  1 b   cot  1  a.
                     3.49.  Prove the identities:
                                                                  3
                                    2
                                                                                   3
                                           2
                                                                                                    1
                           (a)1   tanh x ¼ sech x,  (b) sin 3x ¼ 3 sin x   4 sin x,  (c)cos 3x ¼ 4cos x   3cos x,  (d)tanh x ¼
                                                                                                    2
                                                                1
                           ðsinh xÞ=ð1 þ cosh xÞ,  (e)ln jcsc x   cot xj¼ ln j tan xj.
                                                                2
                                                                                                    2
                     3.50.  Find the relative and absolute maxima and minima of: (a) f ðxÞ¼ðsin xÞ=x, f ð0Þ¼ 1; (b) f ðxÞ¼ ðsin xÞ=
                            2
                           x , f ð0Þ¼ 1. Discuss the cases when f ð0Þ is undefined or f ð0Þ is defined but 6¼ 1.
                     LIMITS
                     3.51.  Evaluate the following limits, first by using the definition and then using theorems on limits.
                                                                  2
                                                                                                 4
                                                      1          x   4        p x   2       ð2 þ hÞ   16
                                                                                ffiffiffi
                                   2
                               limðx   3x þ 2Þ;  lim     ;  ðcÞ lim   ;  ðdÞ lim    ;  ðeÞ lim       ;
                           ðaÞ               ðbÞ
                               x!3              x! 1 2x   5   x!2 x   2    x!4 4   x     h!0    h
                                    ffiffiffi
                                  p
                                    x
                               lim    :
                           ð f Þ
                               x!1 x þ 1
                                           1
                                                         1
                           Ans.  ðaÞ 2;  ðbÞ  ;  ðcÞ 4;  ðdÞ  ;  ðeÞ 32;  1
                                           7             4         ð f Þ  2
                                   8
                                    3x   1; x < 0
                                   <
                     3.52.  Let f ðxÞ¼  0;  x ¼ 0 :  ðaÞ Construct a graph of f ðxÞ.
                                    2x þ 5; x > 0
                                   :
                           Evaluate (b) lim f ðxÞ;  ðcÞ  lim f ðxÞ;  ðdÞ  lim f ðxÞ;  ðeÞ  lim f ðxÞ;  ð f Þ lim f ðxÞ,justifying your
                                     x!2         x! 3        x!0þ        x!0          x!0
                           answer in each case.
                           Ans.  (b)9,  (c)  10,  (d)5,  (e)  1,  ( f ) does not exist
                     3.53.  Evaluate  (a) lim  f ðhÞ  f ð0þÞ  and (b) lim  f ðhÞ  f ð0 Þ , where f ðxÞ is the function of Prob. 3.52.
                                             h                   h
                                     h!0þ                 h!0
                           Ans.  (a)2,  (b)3
                                     2
                     3.54.  (a)If f ðxÞ¼ x cos 1=x,evaluate lim f ðxÞ,justifying your answer. (b) Does your answer to (a) still remain
                                                  x!0
                                                  2
                           the same if we consider f ðxÞ¼ x cos 1=x, x 6¼ 0, f ð0Þ¼ 2? Explain.
                                            2
                     3.55.  Prove that lim 10  1=ðx 3Þ  ¼ 0using the definition.
                                   x!3
                                   1 þ 10  1=x
                                                     1
                     3.56.  Let f ðxÞ¼    , x 6¼ 0, f ð0Þ¼ .  Evaluate  (a) lim f ðxÞ,  (b) lim f ðxÞ,  (c) lim f ðxÞ,justifying
                                   2   10  1=x       2            x!0þ        x!0         x!0
                           answers in all cases.
                                  1
                           Ans.  (a) ,  (b)  1;  ðcÞ does not exist.
                                  2
                     3.57.  Find  (a) lim  jxj  ;  ðbÞ  lim  jxj .  Illustrate your answers graphically.
                                   x!0þ x     x!0  x
                           Ans.  (a)1,  (b)  1
                     3.58.  If f ðxÞ is the function defined in Problem 3.56, does lim f ðjxjÞ exist?  Explain.
                                                                 x!0
                     3.59.  Explain exactly what is meant when one writes:
                                  2   x                                   2x þ 5  2
                               lim     ¼ 1;       lim ð1   e 1=x Þ¼  1;  ðcÞ lim  ¼ :
                                      2                               x!1 3x   2  3
                           ðaÞ                 ðbÞ
                                                  x!0þ
                               x!3 ðx   3Þ
   65   66   67   68   69   70   71   72   73   74   75