Page 66 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 66

CHAP. 3]                FUNCTIONS, LIMITS, AND CONTINUITY                        57


                              These results follow at once from the proofs given in Problem 3.19 by taking A ¼ f ðx 0 Þ and B ¼ gðx 0 Þ
                           and rewriting 0 < jx   x 0 j <  as jx   x 0 j < , i.e., including x ¼ x 0 .

                     3.25. Prove that f ðxÞ¼ x is continuous at any point x ¼ x 0 .
                              We must show that, given any  > 0, we can find  > 0suchthat j f ðxÞ  f ðx 0 Þj ¼ jx   x 0 j <  when
                           jx   x 0 j < .  By choosing   ¼  ,the result follows at once.

                                           3
                     3.26. Prove that f ðxÞ¼ 2x þ x is continuous at any point x ¼ x 0 .
                                                                                               3
                                                                                                   3
                                                                                         2
                                                                                       2
                              Since x is continuous at any point x ¼ x 0 (Problem 3.25) so also is x   x ¼ x , x   x ¼ x ,2x , and
                                  3
                           finally 2x þ x,using the theorem (Problem 3.24) that sums and products of continuous functions are
                           continuous.
                                             ffiffiffiffiffiffiffiffiffiffiffi
                                           p
                                             x   5 for 5 @ x @ 9, then f ðxÞ is continuous in this interval.
                     3.27. Prove that if f ðxÞ¼
                                                                              p ffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                              If x 0 is any point such that 5 < x 0 < 9, then lim f ðxÞ¼ lim  x   5 ¼  x 0   5 ¼ f ðx 0 Þ.  Also,
                                                                  x!x 0   x!x 0
                              p ffiffiffiffiffiffiffiffiffiffiffi        p ffiffiffiffiffiffiffiffiffiffiffi
                           lim  x   5 ¼ 0 ¼ f ð5Þ and lim  x   5 ¼ 2 ¼ f ð9Þ.  Thus the result follows.
                           x!5þ                x!9       p ffiffiffiffiffiffiffiffiffi  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffi
                              Here we have used the result that lim  f ðxÞ ¼  lim f ðxÞ ¼  f ðx 0 Þ if f ðxÞ is continuous at x 0 .An  ,
                                                      x!x 0      x!x 0
                           proof, directly from the definition, can also be employed.
                     3.28. For what values of x in the domain of definition is each of the following functions continuous?
                                     x
                                                    Ans.  all x except x ¼ 1(where the denominator is zero)
                                   x   1
                           (a) f ðxÞ¼  2
                                   1 þ cos x
                                                    Ans.  all x
                                   3 þ sin x
                           (b) f ðxÞ¼
                                      1
                           (c)       ffiffiffiffiffiffiffiffiffiffiffiffiffiffi  Ans.  All x >  10
                                    4  10 þ 4
                              f ðxÞ¼ p
                                          2
                           (d) f ðxÞ¼ 10  1=ðx 3Þ   Ans.  all x 6¼ 3 (see Problem 3.55)
                                           2
                           (e)  f ðxÞ¼  10  1=ðx 3Þ  ; x 6¼ 3  Ans.  all x, since lim f ðxÞ¼ f ð3Þ
                                     0;       x ¼ 3               x!3
                                   x  jxj
                           ( f ) f ðxÞ¼
                                     x
                                             x   x               x þ x
                                                                      ¼ 2. At x ¼ 0, f ðxÞ is undefined. Then f ðxÞ is
                                  If x > 0, f ðxÞ¼  ¼ 0. If x < 0, f ðxÞ¼
                                               x                   x
                              continuous for all x except x ¼ 0.
                                   8
                                          ; x < 0
                                     x  jxj
                                   <
                                       x
                           ðgÞ  f ðxÞ¼
                                     2;     x ¼ 0
                                   :
                                  As in ð f Þ, f ðxÞ is continuous for x < 0.  Then since
                                                               x þ x
                                                 lim  x  jxj  ¼ lim  ¼ lim 2 ¼ 2 ¼ f ð0Þ
                                                      x         x
                                                 x!0       x!0       x!0
                              if follows that f ðxÞ is continuous (from the left) at x ¼ 0.
                                  Thus, f ðxÞ is continuous for all x @ 0, i.e., everywhere in its domain of definition.
                                           x
                                              :      Ans:  all x except 0;   ;  2 ;  3 ; ... :
                           ðhÞ  f ðxÞ¼ x csc x ¼
                                          sin x
                                                                  x
                           (i)  f ðxÞ¼ x csc x, f ð0Þ¼ 1. Since lim x csc x ¼ lim  ¼ 1 ¼ f ð0Þ,we see that f ðxÞ is continuous for all x
                                                    x!0       x!0 sin x
                              except   ;  2 ;  3 ; .. . [compare (h)].
   61   62   63   64   65   66   67   68   69   70   71