Page 61 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 61

52                      FUNCTIONS, LIMITS, AND CONTINUITY                  [CHAP. 3


                                            x
                                          1
                                                 x
                      3.9. If f ðxÞ¼ cosh x ¼ ðe þ e Þ, prove that we can choose as the principal value of the inverse
                                          2
                                                 p
                                                  ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                   2
                          function, cosh  1       x   1Þ, x A 1.
                                        x ¼ lnðx þ
                                                                                               p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                                  2
                                                                                                4y   4
                                   1
                                          x
                                     x
                                                                                        x
                                                   x
                              If y ¼ ðe þ e Þ, e 2x    2ye þ 1 ¼ 0.  Then using the quadratic formula, e ¼  2y    ¼
                                   2
                             p ffiffiffiffiffiffiffiffiffiffiffiffiffi     p ffiffiffiffiffiffiffiffiffiffiffiffiffi                                2
                                                    2
                                2
                               y   1.              y   1Þ.
                          y          Thus x ¼ lnðy
                                                                !
                                                           p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                             2
                                                            y   1       1
                                     p ffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                       2           2    y þ             ffiffiffiffiffiffiffiffiffiffiffiffiffi,wecan also write
                                                             2
                              Since y    y   1 ¼ðy    y   1Þ  p ffiffiffiffiffiffiffiffiffiffiffiffiffi ¼  p  2
                                                            y   1       y   1
                                                        y þ         y þ
                                                     q ffiffiffiffiffiffiffiffiffiffiffiffiffi           q ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                       2     or  cosh  1          2
                                            x ¼  lnðy þ  y   1 Þ      y ¼  lnðy þ  y   1 Þ
                              Choosing the þ sign as defining the principal value and replacing y by x,we have
                                          2
                                         x   1 Þ.
                          cosh  1  x ¼ lnðx þ  p ffiffiffiffiffiffiffiffiffiffiffiffiffi  The choice x A 1is made so that the inverse function is real.
                     LIMITS
                                                      2
                                       2             x ; x 6¼ 2
                     3.10. If  (a) f ðxÞ¼ x ,(b) f ðxÞ¼       , prove that lim f ðxÞ¼ 4.
                                                     0;  x ¼ 2          x!2
                                                                                                2
                          (a)We must show that given any  > 0wecan find  > 0(depending on   in general) such that jx   4j <
                              when 0 < jx   2j < .
                                                                                     2
                                 Choose   @ 1so that 0 < jx   2j < 1or 1 < x < 3, x 6¼ 2.  Then jx   4j¼ jðx   2Þðx þ 2Þj ¼
                              jx   2jjx þ 2j < jx þ 2j < 5 .
                                                                           2
                                 Take   as 1 or  =5, whichever is smaller. Then we have jx   4j <  whenever 0 < jx   2j <  and
                              the required result is proved.
                                                                                              2
                                 It is of interest to consider some numerical values. If for example we wish to make jx   4j <:05,
                              we can choose   ¼  =5 ¼ :05=5 ¼ :01. To see that this is actually the case, note that if 0 < jx   2j <:01
                                                                  2
                                                                                   2
                              then 1:99 < x < 2:01 ðx 6¼ 2Þ and so 3:9601 < x < 4:0401,  :0399 < x   4 <:0401 and certainly
                                          2
                               2
                              jx   4j <:05 ðx 6¼ 4Þ.  The fact that these inequalities also happen to hold at x ¼ 2ismerely coin-
                              cidental.
                                                 2
                                 If we wish to make jx   4j < 6, we can choose   ¼ 1 and this will be satisfied.
                          (b) There is no difference between the proof for this case and the proof in (a), since in both cases we exclude
                              x ¼ 2.
                                                  2
                                         4
                                              3
                                       2x   6x þ x þ 3
                     3.11. Prove that lim             ¼ 8.
                                    x!1     x   1

                                                                             2x   6x þ x þ 3
                                                                               4   3   2

                                                                                           ð 8Þ  <  when
                                                                                  x   1
                              We must show that for any  > 0wecan find  > 0suchthat

                                                                    2
                                                           4
                                                                3
                                                          2x   6x þ x þ 3   3   2                3   2
                          0 < jx   1j < .Since x 6¼ 1, we can write     ¼  ð2x   4x   3x   3Þðx   1Þ  ¼ 2x   4x
                                                               x   1             x   1
                          3x   3oncancelling the common factor x   1 6¼ 0.
                                                                                    3
                                                                                        2
                              Then we must show that for any  > 0, we can find  > 0suchthat j2x   4x   3x þ 5j <  when
                          0 < jx   1j < .  Choosing   @ 1, we have 0 < x < 2, x 6¼ 1.
                                    3    2                2            2            2
                              Now j2x   4x   3x þ 5j¼jx   1jj2x   2x   5j < j2x   2x   5j < ðj2x jþj2xjþ 5Þ < ð8 þ 4 þ 5Þ
                            ¼ 17 .  Taking   as the smaller of 1 and  =17, the required result follows.
                                    8
                                           ; x 6¼ 3
                                    <  jx   3j
                                      x   3       ,   (a) Graph the function.  (b) Find lim f ðxÞ.  (c)Find
                     3.12. Let f ðxÞ¼
                                      0;      x ¼ 3
                                    :                                                x!3þ
                           lim f ðxÞ.(d)Find lim f ðxÞ.
                                            x!3
                          x!3
                                             x   3
                          (a) For x > 3,  jx   3j  ¼  ¼ 1.
                                       x   3  x   3
                              For x < 3,  jx   3j  ¼   ðx   3Þ  ¼ 1.
                                       x   3  x   3
   56   57   58   59   60   61   62   63   64   65   66