Page 64 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 64

CHAP. 3]                FUNCTIONS, LIMITS, AND CONTINUITY                        55


                           (b)We have
                                             j f ðxÞgðxÞ  ABj¼j f ðxÞ½gðxÞ  BŠþ B½ f ðxÞ  AŠj         ð4Þ
                                                         @ j f ðxÞjjgðxÞ  BjþjBjj f ðxÞ  Aj
                                                         @ j f ðxÞjjgðxÞ  BjþðjBjþ 1Þj f ðxÞ  Aj
                                  Since  lim f ðxÞ¼ A,wecan find   1  such j f ðxÞ  Aj < 1for 0 < jx   x 0 j <  1 , i.e.,
                                       x!x 0
                              A   1 < f ðxÞ < A þ 1, so that f ðxÞ is bounded, i.e., j f ðxÞj < P where P is a positive constant.
                                  Since  lim gðxÞ¼ B,given  > 0wecan find   2 > 0suchthat jgðxÞ  Bj < =2P for
                                       x!x 0
                              0 < jx   x 0 j <  2 .
                                  Since lim f ðxÞ¼ A,given  > 0wecan find   3 > 0suchthat j f ðxÞ  Aj <  for
                                      x!x 0
                                                                                             2ðjBjþ 1Þ
                              0 < jx   x 0 j <  2 .
                                  Using these in (4), we have

                                                                                 ¼
                                               j f ðxÞgðxÞ  ABj < P    þðjBjþ 1Þ
                                                              2P          2ðjBjþ 1Þ
                              for 0 < jx   x 0 j <  where   is the smaller of   1 ;  2 ;  3 and the proof is complete.
                           (c)  We must show that for any  > 0wecan find  > 0suchthat


                                              1
                                                  1    jgðxÞ  Bj
                                                             <     when   0 < jx   x 0 j <
                                                    ¼                                                 ð5Þ
                                                  B
                                             gðxÞ     jBjjgðxÞj
                                  By hypothesis, given  > 0we can find   1 > 0suchthat
                                                           2
                                               jgðxÞ  Bj < B    when  0 < jx   x 0 j <  1
                                                         1
                                                         2
                                  By Problem 3.18, since lim gðxÞ¼ B 6¼ 0, we can find   2 > 0suchthat
                                                   x!x 0
                                                       1      when
                                                       2
                                                 jgðxÞj > jBj        0 < jx   x 0 j <  2
                                  Then if   is the smaller of   1 and   2 ,wecan write
                                                           1  2
                                        1                   B
                                            1    jgðxÞ  Bj  2
                                                        <       ¼     whenever  0 < jx   x 0 j <
                                              ¼              1
                                            B
                                                             2
                                       gðxÞ      jBjjgðxÞj
                                                         jBj  jBj
                              and the required result is proved.
                           (d)From parts (b) and (c),
                                                            1               1      1  A
                                           lim  f ðxÞ  ¼ lim f ðxÞ   ¼ lim f ðxÞ  lim  ¼ A    ¼
                                                   x!x 0        x!x 0              B  B
                                           x!x 0 gðxÞ
                                                           gðxÞ         x!x 0 gðxÞ
                              This can also be proved directly (see Problem 3.69).
                                  The above results can also be proved in the cases x ! x 0 þ, x ! x 0  , x !1, x ! 1.
                              Note:Inthe proof of (a)we have used the results j f ðxÞ  Aj < =2 and jgðxÞ  Bj < =2, so that the final
                           result would come out to be j f ðxÞþ gðxÞ ðA þ BÞj < .Ofcourse the proof would be just as valid if we
                           had used 2  (or any other positive multiple of  )inplace of  .A similar remark holds for the proofs of ðbÞ,
                           (c), and (d).
                     3.20. Evaluate each of the following, using theorems on limits.
                                                2
                                   2
                               limðx   6x þ 4Þ¼ lim x þ limð 6xÞþ lim 4
                           ðaÞ
                               x!2           x!2   x!2      x!2
                                           ¼ðlim xÞðlim xÞþðlim  6Þðlim xÞþ lim 4
                                             x!2  x!2    x!2   x!2   x!2
                                           ¼ð2Þð2Þþð 6Þð2Þþ 4 ¼ 4
                                  In practice the intermediate steps are omitted.
   59   60   61   62   63   64   65   66   67   68   69