Page 65 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 65

56                      FUNCTIONS, LIMITS, AND CONTINUITY                  [CHAP. 3



                                               lim ðx þ 3Þ lim ð2x   1Þ   3
                                               x! 1    x! 1        2  ð 3Þ
                               lim
                                  ðx þ 3Þð2x   1Þ
                          ðbÞ       2        ¼        2          ¼       ¼
                              x! 1 x þ 3x   2                        4    2
                                                  lim ðx þ 3x   2Þ
                                                 x! 1
                                                    3   1
                                        2
                                   4
                                  2x   3x þ 1    2    x 2  þ  x 4
                               lim          ¼ lim
                          ðcÞ      4   3
                              x!1 6x þ x   3x  x!1  1   3
                                                    x  x
                                                 6 þ     3
                                                        3      1
                                              lim 2 þ lim  þ lim
                                                    x!1 x 2  x!1 x 4  2  1
                                              x!1
                                                        1      3   6  3
                                            ¼                    ¼  ¼
                                              lim 6 þ lim  þ lim
                                                    x!1 x  x!1 x 3
                                              x!1
                              by Problem 3.19.
                                 p ffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffi
                                   4 þ h   2    4 þ h   2  4 þ h þ 2
                               lim        ¼ lim
                          ðdÞ                           p ffiffiffiffiffiffiffiffiffiffiffi
                              h!0    h     h!0    h      4 þ h þ 2
                                                4 þ h   4        1       1   1
                                          ¼ lim  p ffiffiffiffiffiffiffiffiffiffiffi  ¼ lim p ffiffiffiffiffiffiffiffiffiffiffi  ¼  ¼
                                                          h!0  4 þ h þ 2  2 þ 2  4
                                           h!0 hð 4 þ h þ 2Þ
                                  sin x    sin x p ffiffiffi  sin x   p ffiffiffi
                                    ffiffiffi ¼ lim    x ¼ lim     lim  x ¼ 1   0 ¼ 0:
                                    x  x!0þ x       x!0þ x
                          ðeÞ  lim p
                              x!0þ                          x!0þ
                                 Note that in (c), (d), and (e)ifweuse the theorems on limits indiscriminately we obtain the so
                              called indeterminate forms 1=1 and 0/0. To avoid such predicaments, note that in each case the form
                              of the limit is suitably modified.  For other methods of evaluating limits, see Chapter 4.
                     CONTINUITY
                     (Assume that values at which continuity is to be demonstrated, are interior domain values unless
                     otherwise stated.)
                                          2
                     3.21. Prove that f ðxÞ¼ x is continuous at x ¼ 2.
                          Method 1:  By Problem 3.10, lim f ðxÞ¼ f ð2Þ¼ 4 and so f ðxÞ is continuous at x ¼ 2.
                                                 x!2
                          Method 2: We must show that given any  > 0, we can find  > 0(depending on  )suchthat
                                       2
                          j f ðxÞ  f ð2Þj ¼ jx   4j <  when jx   2j < .  The proof patterns that are given in Problem 3.10.
                                              x sin 1=x;  x 6¼ 0

                                              5;       x ¼ 0
                     3.22. (a)Prove that f ðxÞ¼             is not continuous at x ¼ 0. (b) Can one redefine f ð0Þ
                          so that f ðxÞ is continuous at x ¼ 0?
                          (a)From Problem 3.13, lim f ðxÞ¼ 0. But this limit is not equal to f ð0Þ¼ 5, so that f ðxÞ is discontinuous
                                             x!0
                              at x ¼ 0.
                          (b)By redefining f ðxÞ so that f ð0Þ¼ 0, the function becomes continuous.  Because the function can be
                              made continuous at a point simply by redefining the function at the point, we call the point a removable
                              discontinuity.
                                                   3
                                                       2
                                              4
                                             2x   6x þ x þ 3
                                                            continuous at x ¼ 1?
                     3.23. Is the function f ðxÞ¼
                                                  x   1
                              f ð1Þ does not exist, so that f ðxÞ is not continuous at x ¼ 1.  By redefining f ðxÞ so that f ð1Þ¼ lim
                                                                                                     x!1
                          f ðxÞ¼  8 (see Problem 3.11), it becomes continuous at x ¼ 1, i.e., x ¼ 1isa removable discontinuity.
                     3.24. Prove that if f ðxÞ and gðxÞ are continuous at x ¼ x 0 ,so also are (a) f ðxÞþ gðxÞ,(b) f ðxÞgðxÞ,
                          (c)  f ðxÞ  if f ðx 0 Þ 6¼ 0.
                             gðxÞ
   60   61   62   63   64   65   66   67   68   69   70