Page 69 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 69

60                      FUNCTIONS, LIMITS, AND CONTINUITY                  [CHAP. 3


                                   2
                     3.37.  If f ðxÞ¼ 2x ,0 < x @ 2, find (a)the l.u.b. and (b)the g.l.b. of f ðxÞ.Determine whether f ðxÞ attains its
                          l.u.b. and g.l.b.
                          Ans.(a)8,  (b)0

                     3.38.  Construct a graph for each of the following functions.

                              f ðxÞ¼jxj;  3 @ x @ 3             x  ½xŠ  where ½xм greatest integer @ x
                                                                  x
                          ðaÞ                               ð f Þ
                                      jxj
                                        ;  2 @ x @ 2            f ðxÞ¼ cosh x
                                       x
                          ðbÞ  f ðxÞ¼ 2                      ðgÞ
                                   8
                                     0;  x < 0
                                   >
                                   <                                 sin x
                                     1
                          ðcÞ  f ðxÞ¼  2  ;  x ¼ 0          ðhÞ  f ðxÞ¼  x
                                   >
                                     1;  x > 0
                                   :
                                      x;  2 @ x @ 0                         x

                                      x;  0 @ x @ 2                  ðx   1Þðx   2Þðx   3Þ
                          ðdÞ  f ðxÞ¼                        ðiÞ  f ðxÞ¼
                                                                       2
                                    2
                              f ðxÞ¼ x sin 1=x; x 6¼ 0               sin x
                          ðeÞ                               ð jÞ  f ðxÞ¼  2
                                                                      x
                                                    2
                                                                  2
                                                                      2
                                                 2
                                               2
                                                                2
                                                                                                      2
                                                       2
                                                                        2
                                                                                 2
                     3.39.  Construct graphs for (a) x =a þ y =b ¼ 1, (b) x =a   y =b ¼ 1, (c) y ¼ 2px, and (d) y ¼ 2ax   x ,
                          where a; b; p are given constants. In which cases when solved for y is there exactly one value of y assigned to
                          each value of x,thus making possible definitions of functions f , and enabling us to write y ¼ f ðxÞ?In which
                          cases must branches be defined?
                     3.40.  (a)From the graph of y ¼ cos x construct the graph obtained by interchanging the variables, and from
                          which cos  1  x will result by choosing an appropriate branch. Indicate possible choices of a principal value
                                                                 1
                                                       1
                          of cos  1  x.Using this choice, find cos ð1=2Þ  cos ð 1=2Þ. Does the value of this depend on the choice?
                          Explain.
                     3.41.  Work parts (a) and (b)ofProblem 40 for  (a) y ¼ sec  1  x,  (b) y ¼ cot  1  x.
                     3.42.  Given the graph for y ¼ f ðxÞ,show how to obtain the graph for y ¼ f ðax þ bÞ, where a and b are given
                          constants.  Illustrate the procedure by obtaining the graphs of
                          (a) y ¼ cos 3x;  ðbÞ y ¼ sinð5x þ  =3Þ;  ðcÞ y ¼ tanð =6   2xÞ.
                     3.43.  Construct graphs for  (a) y ¼ e  jxj ,  (b) y ¼ ln jxj,  (c) y ¼ e  jxj  sin x.
                     3.44.  Using the conventional principal values on Pages 44 and 45, evaluate:
                                 1  p ffiffiffi                         1      1
                          (a) sin ð  3=2Þ                  ( f )  sin  x þ cos  x;  1 @ x @ 1
                                 1       1                        1
                          (b)tan ð1Þ  tan ð 1Þ             (g)  sin ðcos 2xÞ; 0 @ x @  =2
                                                 ffiffiffi
                                                                  1
                                 1
                                     ffiffiffi
                                            1
                                                p
                                    p
                          (c)  cot ð1= 3Þ  cot ð 1= 3Þ     (h)  sin ðcos 2xÞ; =2 @ x @ 3 =2
                                    2
                          (d)cosh  1  p ffiffiffi                (i)  tanh ðcsch  1  3xÞ; x 6¼ 0
                                   1                                  1  2
                          (e)  e   coth ð25=7Þ             ( j)  cosð2tan  x Þ
                                                                                              1   x 4
                          Ans. (a)   =3  (c)   =3      (e)  3  (g)  =2   2x  (i)  jxj
                                                          4                     p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ð jÞ  1 þ x 4
                                                                                   2
                                                  ffiffiffi                          x 9x þ 1
                                                 p
                               (b)  =2   (d)lnð1 þ  2 Þ  ( f )  =2  (h)2x   3 =2
                                                          1
                     3.45.  Evaluate  (a)cosf  sinhðln 2Þg,  (b)cosh fcothðln 3Þg.
                                   p ffiffiffi
                          Ans.(a)   2=2;  ðbÞ ln 2
   64   65   66   67   68   69   70   71   72   73   74