Page 63 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 63

54                      FUNCTIONS, LIMITS, AND CONTINUITY                  [CHAP. 3


                              Area of triangle OAC < Area of sector OAD < Area of triangle OBD     B

                                                        1
                                                            1
                          i.e.,               1 sin   cos  <  < tan                           A
                                              2         2   2
                                    1
                          Dividing by sin  ,                                                        tan
                                    2
                                                            1                               sin
                                                cos  <   <
                                                      sin    cos
                                                      sin    1                      O          C    D
                          or                    cos  <   <                               cos
                                                           cos
                                                          sin
                          As   ! 0, cos   ! 1 and it follows that lim  ¼ 1.
                                                         !0                               Fig. 3-13
                     THEOREMS ON LIMITS
                     3.17. If lim f ðxÞ exists, prove that it must be unique.
                            x!x 0
                              We must show that if lim f ðxÞ¼ l 1 and lim f ðxÞ¼ l 2 ,then l 1 ¼ l 2 .
                                              x!x 0         x!x 0
                              By hypothesis, given any  > 0wecan find  > 0suchthat
                                                j f ðxÞ  l 1 j < =2  when  0 < jx   x 0 j <
                                                j f ðxÞ  l 2 j < =2  when  0 < jx   x 0 j <
                          Then by the absolute value property 2 on Page 3,
                                      jl 1   l 2 j¼jl 1   f ðxÞþ f ðxÞ  l 2 j @ jl 1   f ðxÞj þ j f ðxÞ  l 2 j < =2 þ  =2 ¼
                          i.e., jl 1   l 2 j is less than any positive number   (however small) and so must be zero. Thus l 1 ¼ l 2 .


                     3.18. If lim gðxÞ¼ B 6¼ 0, prove that there exists  > 0 such that
                            x!x 0
                                                       1
                                                       2
                                                 jgðxÞj > jBj  for  0 < jx   x 0 j <
                                                                          1
                              Since lim gðxÞ¼ B,we can find  > 0suchthat jgðxÞ  Bj < jBj for 0 < jx   x 0 j < .
                                                                          2
                                  x!x 0
                              Writing B ¼ B   gðxÞþ gðxÞ,we have
                                                                      1
                                                                      2
                                                   jBj @ jB   gðxÞj þ jgðxÞj < jBjþjgðxÞj
                                  1
                                                          1
                          i.e., jBj < jBjþjgðxÞj, from which jgðxÞj > jBj.
                                  2                       2
                     3.19. Given lim f ðxÞ¼ A and lim gðxÞ¼ B, prove  (a) lim ½ f ðxÞþ gðxފ ¼ A þ B,  (b) lim
                                x!x 0            x!x 0                  x!x 0                       x!x 0
                                                1    1                      A
                          f ðxÞgðxÞ¼ AB,  (c) lim  ¼  if B 6¼ 0,  (d) lim  f ðxÞ  ¼  if B 6¼ 0.
                                                     B                      B
                                           x!x 0 gðxÞ             x!x 0 gðxÞ
                          (a)We must show that for any  > 0wecan find  > 0suchthat
                                            j½ f ðxÞþ gðxފ   ðA þ BÞj <   when  0 < jx   x 0 j <
                                 Using absolute value property 2, Page 3, we have
                                     j½ f ðxÞþ gðxފ   ðA þ BÞj ¼ j½ f ðxÞ  AŠþ½gðxÞ  BŠj @ j f ðxÞ  AjþjgðxÞ  Bj  ð1Þ
                                 By hypothesis, given  > 0wecan find   1 > 0 and   2 > 0suchthat
                                                j f ðxÞ  Aj < =2  when  0 < jx   x 0 j <  1          ð2Þ
                                                jgðxÞ  Bj < =2  when  0 < jx   x 0 j <  2            ð3Þ
                              Then from (1), (2), and (3),
                                       j½ f ðxÞþ gðxފ   ðA þ BÞj < =2 þ  =2 ¼    when  0 < jx   x 0 j <
                              where   is chosen as the smaller of   1 and   2 .
   58   59   60   61   62   63   64   65   66   67   68