Page 79 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 79

70                                 DERIVATIVES                             [CHAP. 4



                     RULES FOR DIFFERENTIATION
                        If f , g; and h are differentiable functions, the following differentiation rules are valid.
                         d              d       d
                     1:                                  0     0     (Addition Rule)
                        dx  f f ðxÞþ gðxÞg ¼  dx  f ðxÞþ  dx  gðxÞ¼ f ðxÞþ g ðxÞ

                         d              d       d
                     2:                                  0     0
                        dx  f f ðxÞ  gðxÞg ¼  dx  f ðxÞ   dx  gðxÞ¼ f ðxÞ  g ðxÞ

                         d            d
                     3:    fCf ðxÞg ¼ C  f ðxÞ¼ Cf ðxÞ where C is any constant
                                                0
                        dx           dx
                         d                d          d
                     4:    f f ðxÞgðxÞg ¼ f ðxÞ  gðxÞþ gðxÞ  f ðxÞ¼ f ðxÞg ðxÞþ gðxÞ f ðxÞ  (Product Rule)
                                                                          0
                                                                 0
                        dx               dx         dx
                                       d          d
                         d         gðxÞ  dx  f ðxÞ  f ðxÞ dx  gðxÞ  0   0
                     5:     f ðxÞ                         gðxÞ f ðxÞ  f ðxÞg ðxÞ  if gðxÞ 6¼ 0  (Quotient Rule)
                                               2        ¼           2
                                 ¼
                        dx gðxÞ
                                           ½gðxފ               ½gðxފ
                     6: If y ¼ f ðuÞ where u ¼ gðxÞ; then

                                                  dy  dy du       du
                                                               0       0     0
                                                  dx  ¼  du dx  ¼ f ðuÞ  dx  ¼ f fgðxÞgg ðxÞ        ð12Þ

                        Similarly if y ¼ f ðuÞ where u ¼ gðvÞ and v ¼ hðxÞ, then

                                                           dy  dy du dv
                                                           dx  ¼  du dv dx                          ð13Þ


                        The results (12) and (13) are often called chain rules for differentiation of composite functions.

                     7: If y ¼ f ðxÞ; and x ¼ f   1 ðyÞ; then dy=dx and dx=dy are related by

                                                            dy     1
                                                            dx  ¼  dx=dy                            ð14Þ


                     8: If x ¼ f ðtÞ and y ¼ gðtÞ; then


                                                          dy  dy=dt  g ðtÞ
                                                                      0
                                                          dx  ¼  dx=dt  ¼  f ðtÞ                    ð15Þ
                                                                      0
                        Similar rules can be formulated for differentials.  For example,

                                  df f ðxÞþ gðxÞg ¼ df ðxÞþ dgðxÞ¼ f ðxÞdx þ g ðxÞdx ¼f f ðxÞþ g ðxÞgdx
                                                                               0
                                                                      0
                                                                                     0
                                                              0
                                    df f ðxÞgðxÞg ¼ f ðxÞdgðxÞþ gðxÞdf ðxÞ¼f f ðxÞg ðxÞþ gðxÞ f ðxÞgdx
                                                                                   0
                                                                         0
   74   75   76   77   78   79   80   81   82   83   84