Page 80 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 80

CHAP. 4]                           DERIVATIVES                                   71


                     DERIVATIVES OF ELEMENTARY FUNCTIONS
                        In the following we assume that u is a differentiable function of x;if u ¼ x, du=dx ¼ 1. The inverse
                     functions are defined according to the principal values given in Chapter 3.
                          d                                     d    1       1   du
                      1.    ðCÞ¼ 0                         16.    cot  u ¼
                                                                               2
                         dx                                    dx          1 þ u dx

                          d  n    n 1  du                       d    1        1    du  þ if u > 1
                      2.    u ¼ nu                         17.    sec  u ¼  p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                               2
                         dx         dx                         dx          u u   1 dx    if u <  1

                          d           du                        d    1        1    du    if u > 1
                      3.    sin u ¼ cos u                  18.    csc  u ¼  p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                               2
                         dx           dx                       dx          u u   1 dx  þ if u <  1
                          d             du                      d             du
                      4.    cos u ¼  sin u                 19.    sinh u ¼ cosh u
                         dx             dx                     dx             dx
                          d         2  du                       d             du
                      5.    tan u ¼ sec u                  20.    cosh u ¼ sinh u
                         dx            dx                      dx             dx
                          d           2  du                     d           2  du
                      6.    cot u ¼ csc u                  21.    tanh u ¼ sech u
                         dx             dx                     dx              dx
                          d               du                    d             2  du
                      7.    sec u ¼ sec u tan u            22.    coth u ¼ csch u
                         dx               dx                   dx               dx
                          d                du                   d                   du
                      8.    csc u ¼ csc u cot u            23.    sech u ¼ sech u tanh u
                         dx                dx                  dx                   dx
                          d        log e du                     d                   du
                                     a
                      9.    log u ¼         a > 0; a 6¼ 1  24.    csch u ¼ csch u coth u
                              a
                         dx         u   dx                     dx                   dx
                          d        d       1 du                 d     1      1    du
                     10.    log u ¼  ln u ¼                25.    sinh  u ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                              e
                         dx        dx      u dx                dx           1 þ u 2 dx
                          d  u   u   du                         d     1       1   du
                     11.    a ¼ a ln a                     26.    cosh  u ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                         dx          dx                        dx           u   1 dx
                                                                             2
                          d  u  u  du                           d     1      1  du
                     12.    e ¼ e                          27.    tanh  u ¼        ;  juj < 1
                                                                               2
                         dx      dx                            dx          1   u dx
                          d           1    du                   d            1  du
                     13.    sin  1  u ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffi    28.    coth  1  u ¼    ;  juj > 1
                                                                               2
                         dx          1   u dx                  dx          1   u dx
                                         2
                          d             1    du                 d             1    du
                     14.    cos  1  u ¼  p ffiffiffiffiffiffiffiffiffiffiffiffiffi   29.    sech   1  u ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                         dx            1   u dx                dx          u 1   u dx
                                                                                 2
                                           2
                          d           1  du                     d              1    du
                     15.    tan  1  u ¼                    30.    csch   1  u ¼  p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                        2
                         dx         1 þ u dx                   dx           u u þ 1  dx
                                                                                2
                     HIGHER ORDER DERIVATIVES
                        If f ðxÞ is differentiable in an interval, its derivative is given by f ðxÞ, y or dy=dx, where y ¼ f ðxÞ.If
                                                                           0
                                                                                0
                                                                                                     2
                                                                                            d  dy   d y
                     f ðxÞ is also differentiable in the interval, its derivative is denoted by f ðxÞ, y  00  or  dx dx  ¼  dx 2 .
                                                                                 00
                      0
                                                                                    n
                                                                                   d y
                     Similarly, the nth derivative of f ðxÞ,ifit exists, is denoted by f  ðnÞ ðxÞ, y ðnÞ  or  , where n is called the
                                                                                   dx n
                     order of the derivative. Thus derivatives of the first, second, third, . . . orders are given by f ðxÞ, f ðxÞ,
                                                                                                    00
                                                                                               0
                     f ðxÞ; ... .
                      000
                        Computation of higher order derivatives follows by repeated application of the differentiation rules
                     given above.
   75   76   77   78   79   80   81   82   83   84   85