Page 85 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 85

76                                 DERIVATIVES                             [CHAP. 4



                                           1
                              f ðx þ hÞ  f ðxÞ    3  3
                          ðaÞ            ¼ ½ðx þ hÞ   x Š
                                   h       h
                                           1
                                                            3
                                                        2
                                                                     2
                                                                3
                                              3
                                                  2
                                         ¼ ½x þ 3x h þ 3xh þ h Š  x м 3x þ 3xh þ h 2
                                           h
                              Then
                                                     f ðxÞ¼ lim  f ðx þ hÞ  f ðxÞ  ¼ 3x 2
                                                      0
                                                           h!0    h
                                                 p ffiffiffiffiffiffiffiffiffiffiffi
                                                        p ffiffiffi
                                                          x
                              lim  f ðx þ hÞ  f ðxÞ  ¼ lim  x þ h
                          ðbÞ
                              h!0     h       h!0    h
                                                                              ffiffiffiffiffiffiffiffiffiffiffi
                                                                             p      p ffiffiffi
                              The result follows by multiplying numerator and denominator by  x þ h    x and then letting h ! 0.
                      4.3. If f ðxÞ has a derivative at x ¼ x 0 , prove that f ðxÞ must be continuous at x ¼ x 0 .
                                                                           h;  h 6¼ 0
                                                             f ðx 0 þ hÞ  f ðx 0 Þ
                                               f ðx 0 þ hÞ  f ðx 0 Þ¼
                                                                   h
                          Then           lim f ðx 0 þ hÞ  f ðx 0 Þ¼ lim  f ðx 0 þ hÞ  f ðx 0 Þ    lim h ¼ f ðx 0 Þ  0 ¼ 0
                                                                                 0
                                         h!0              h!0     h       h!0
                          since f ðx 0 Þ exists by hypothesis.  Thus
                                0
                                            lim f ðx 0 þ hÞ  f ðx 0 Þ¼ 0  or  lim f ðx 0 þ hÞ¼ f ðx 0 Þ
                                            h!0                        h!0
                          showing that f ðxÞ is continuous at x ¼ x 0 .

                                     x sin 1=x;  x 6¼ 0
                                     0;       x ¼ 0
                      4.4. Let f ðxÞ¼              .
                          (a)Is f ðxÞ continuous at x ¼ 0? (b) Does f ðxÞ have a derivative at x ¼ 0?
                          (a)By Problem 3.22(b)of Chapter 3, f ðxÞ is continuous at x ¼ 0.
                                                                   h sin 1=h   0   1
                              f ð0Þ¼ lim  f ð0 þ hÞ  f ð0Þ  ¼ lim  f ðhÞ  f ð0Þ  ¼ lim  ¼ lim sin
                               0
                          ðbÞ
                                    h!0    h       h!0    h     h!0    h      h!0  h
                              which does not exist.
                                 This example shows that even though a function is continuous at a point, it need not have a
                              derivative at the point, i.e., the converse of the theorem in Problem 4.3 is not necessarily true.
                                 It is possible to construct a function which is continuous at every point of an interval but has a
                              derivative nowhere.
                                      2
                                     x sin 1=x; x 6¼ 0
                                     0;        x ¼ 0
                      4.5. Let f ðxÞ¼               .
                          (a)Is f ðxÞ differentiable at x ¼ 0? (b)Is f ðxÞ continuous at x ¼ 0?
                                                              0
                                                    2
                                                   h sin 1=h   0     1
                              f ð0Þ¼ lim  f ðhÞ  f ð0Þ  ¼ lim  ¼ lim h sin  ¼ 0
                               0
                          ðaÞ
                                    h!0   h     h!0    h       h!0   h
                              by Problem 3.13, Chapter 3. Then f ðxÞ has a derivative (is differentiable) at x ¼ 0 and its value is 0.
                          (b)From elementary calculus differentiation rules, if x 6¼ 0,

                                                 d      1    2 d    1      1  d
                                                     2
                                            0       x sin  ¼ x    sin  þ sin     2
                                                 dx     x     dx    x      x dx
                                           f ðxÞ¼                               ðx Þ
                                                      1      1        1       1       1
                                               ¼ x 2  cos     þ sin  ð2xÞ¼   cos þ 2x sin
                                                      x    x 2     x          x       x
   80   81   82   83   84   85   86   87   88   89   90