Page 88 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 88

CHAP. 4]                           DERIVATIVES                                   79

                                           d        ðu þ  uÞðv þ  vÞ  uv  u v þ v u þ  u v
                                            uv ¼ lim                ¼ lim
                                          dx     x!0        x          x!0       x

                                                       v    u   u        dv  du
                                              ¼ lim  u  þ v   þ    v ¼ u   þ v
                                                 x!0   x    x   x        dx  dx
                           where it is noted that  v ! 0as  x ! 0, since v is supposed differentiable and thus continuous.
                                                          dy  dy du
                     4.13. If y ¼ f ðuÞ where u ¼ gðxÞ, prove that  ¼     assuming that f and g are differentiable.
                                                          dx  du dx
                              Let x be given an increment  x 6¼ 0. Then as a consequence u and y take on increments  u and  y
                           respectively, where
                                                y ¼ f ðu þ  uÞ  f ðuÞ;   u ¼ gðx þ  xÞ  gðxÞ          ð1Þ
                           Note that as  x ! 0,  y ! 0 and  u ! 0.
                                                  y   dy
                                                        so that   ! 0as  u ! 0 and
                              If  u 6¼ 0, let us write   ¼
                                                  u   du
                                                               dy
                                                                  u þ   u
                                                               du
                                                           y ¼                                        ð2Þ
                              If  u ¼ 0for values of  x,then(1)shows that  y ¼ 0for these values of  x.  For such cases, we
                           define   ¼ 0.
                              It follows that in both cases,  u 6¼ 0or  u ¼ 0, (2) holds. Dividing (2)by  x 6¼ 0 and taking the limit
                           as  x ! 0, we have

                                       dy       y       dy  u   u    dy     u             u
                                         ¼ lim   ¼ lim      þ            lim  þ lim     lim
                                       dx   x!0  x   x!0 du  x   x  ¼  du   x!0  x   x!0   x!0  x
                                           dy du   du  dy du
                                           du dx   dx  du dx
                                         ¼     þ 0    ¼                                               ð3Þ
                                 d                d
                     4.14. Given  ðsin xÞ¼ cos x and  ðcos xÞ¼  sin x, derive the formulas
                                dx                dx
                               d           2          d     1       1
                                 ðtan xÞ¼ sec x;        ðsin
                           ðaÞ                    ðbÞ        xÞ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                               dx                    dx           1   x 2
                                                      d          d
                               d        d    sin x    cos x  dx ðsin xÞ  sin x dx  ðcos xÞ
                               dx      dx cos x           cos x
                           ðaÞ   ðtan xÞ¼       ¼            2
                                                                 1
                                                                    ¼ x
                                       ðcos xÞðcos xÞ ðsin xÞð  sin xÞ  2
                                                cos x          cos x
                                      ¼           2          ¼   2
                           (b)If y ¼ sin  1  x,then x ¼ sin y.  Taking the derivative with respect to x,
                                                    dy     dy   1       1         1
                                             1 ¼ cos y  or         ¼ q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                    dx     dx  ¼  cos y    2    1   x 2
                                                                      1   sin y
                              We have supposed here that the principal value   =2 @ sin  1  x @  =2, is chosen so that cos y is
                                                              q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                             2
                                                                    2
                                                               1   sin y rather than cos y ¼  1   sin y.
                           positive, thus accounting for our writing cos y ¼
                                           d         log e du
                                                       a
                     4.15. Derive the formula  ðlog uÞ¼     ða > 0; a 6¼ 1Þ, where u is a differentiable function of x.
                                                a
                                          dx          u   dx
                              Consider y ¼ f ðuÞ¼ log u.By definition,
                                               a
                                             dy      f ðu þ  uÞ  f ðuÞ  log ðu þ  uÞ  log u
                                                                                    a
                                                                        a
                                               ¼ lim             ¼ lim
                                             du   u!0     u         u!0       u
                                                                                   u= u
                                                     1     u þ  u      1        u
                                               ¼ lim   log a      ¼ lim  log a  1 þ
                                                  u!0  u     u      u!0 u       u
   83   84   85   86   87   88   89   90   91   92   93