Page 87 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 87

78                                 DERIVATIVES                             [CHAP. 4


                                                                2
                      4.9. Find an equation for the tangent line to y ¼ x at the point where  (a) x ¼ 1=3;  ðbÞ x ¼ 1.
                          (a)From Problem 4.8, f ðx 0 Þ¼ 2x 0 so that f ð1=3Þ¼ 2=3.  Then the equation of the tangent line is
                                                            0
                                             0
                                                            or y   ¼ ðx   Þ;
                                                  0               1  2   1           2   1
                                                                                     3
                                        y   f ðx 0 Þ¼ f ðx 0 Þðx   x 0 Þ  9  3  3  i:e:; y ¼ x    9
                          (b)As in part (a), y   f ð1Þ¼ f ð1Þðx   1Þ or y   1 ¼ 2ðx   1Þ, i.e., y ¼ 2x   1.
                                                  0
                     DIFFERENTIALS
                                      3
                     4.10. If y ¼ f ðxÞ¼ x   6x, find  (a)  y;  ðbÞ dy;  ðcÞ  y   dy.
                                                        3             3
                          ðaÞ   y ¼ f ðx þ  xÞ  f ðxÞ¼fðx þ  xÞ   6ðx þ  xÞg   fx   6xg
                                                      2
                                                                2
                                                                      3
                                                                                   3
                                                  3
                                               ¼ x þ 3x  x þ 3xð xÞ þð xÞ   6x   6 x   x þ 6x
                                                   2             2     3
                                               ¼ð3x   6Þ x þ 3xð xÞ þð xÞ
                                                     2
                                                                2
                          (b) dy ¼ principal part of  y ¼ð3x   6Þ x ¼ð3x   6Þdx, since by definition  x ¼ dx.
                                                2
                                                                               2
                                                             2
                                 Note that f ðxÞ¼ 3x   6 and dy ¼ð3x   6Þdx, i.e., dy=dx ¼ 3x   6. It must be emphasized that
                                          0
                              dy and dx are not necessarily small.
                                                                                       2
                                                               3
                                                         2
                          (c)  From (a) and (b),  y   dy ¼ 3xð xÞ þð xÞ ¼   x, where   ¼ 3x x þð xÞ .
                                                           y   dy
                                 Note that   ! 0as  x ! 0, i.e.,  ! 0as  x ! 0. Hence  y   dy is an infinitesimal of
                                                             x
                              higher order than  x (see Problem 4.83).
                                 In case  x is small, dy and  y are approximately equal.
                                  p ffiffiffiffiffi
                                   3
                     4.11. Evaluate  25 approximately by use of differentials.
                              If  x is small,  y ¼ f ðx þ  xÞ  f ðxÞ¼ f ðxÞ x approximately.
                                                            0
                                               p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                      p ffiffiffi            p ffiffiffi  1   2=3
                                      3  x.  Then  3    3  x   x   x (where   denotes approximately equal to).
                                                            3
                              Let f ðxÞ¼        x þ  x
                              If x ¼ 27 and  x ¼ 2, we have
                                           p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffi      p ffiffiffiffiffi
                                            3       3    1   2=3          3
                                                         3
                                             27   2    27   ð27Þ  ð 2Þ;  i.e.,  25   3   2=27
                                ffiffiffiffiffi
                               p
                          Then  3  25   3   2=27 or 2.926.
                                                          3
                              If is interesting to observe that ð2:926Þ ¼ 25:05, so that the approximation is fairly good.
                     DIFFERENTIATION RULES:     DIFFERENTIATION OF ELEMENTARY FUNCTIONS
                                          d               d          d
                     4.12. Prove the formula  f f ðxÞgðxÞg ¼ f ðxÞ  gðxÞþ gðxÞ  f ðxÞ, assuming f and g are differentiable.
                                         dx               dx         dx
                              By definition,
                                   d              f ðx þ  xÞgðx þ  xÞ  f ðxÞgðxÞ
                                     f f ðxÞgðxÞg ¼ lim
                                   dx          x!0           x
                                             ¼ lim  f ðx þ  xÞfgðx þ  xÞ  gðxÞg þ gðxÞf f ðx þ  xÞ  f ðxÞg
                                               x!0                    x

                                                           gðx þ  xÞ  gðxÞ        f ðx þ  xÞ  f ðxÞ
                                             ¼ lim f ðx þ  xÞ           þ lim gðxÞ
                                               x!0               x         x!0          x
                                                  d         d
                                                  dx        dx
                                             ¼ f ðxÞ  gðxÞþ gðxÞ  f ðxÞ
                          Another method:
                              Let u ¼ f ðxÞ, v ¼ gðxÞ.  Then  u ¼ f ðx þ  xÞ  f ðxÞ and  v ¼ gðx þ  xÞ  gðxÞ, i.e., f ðx þ  xÞ¼
                          u þ  u, gðx þ  xÞ¼ v þ  v.  Thus
   82   83   84   85   86   87   88   89   90   91   92