Page 91 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 91

82                                 DERIVATIVES                             [CHAP. 4



                                                  tan  1  b   tan  1  a  1
                                                                         a <  < b
                                                       b   a   ¼  1 þ   2
                                                      2
                                                                                  2
                                             2
                                                                        2
                              Since  > a,1=ð1 þ   Þ < 1=ð1 þ a Þ.  Since  < b,1=ð1 þ   Þ > 1=ð1 þ b Þ.  Then
                                                      1  <  tan  1  b   tan  1  a  <  1
                                                    1 þ b 2    b   a     1 þ a 2
                              and the required result follows on multiplying by b   a.
                          (b)Let b ¼ 4=3 and a ¼ 1inthe result of part (a). Then since tan  1  1 ¼  =4, we have
                                          3      1 4    1   1            3      1 4     1
                                            < tan    tan  1 <    or        < tan  <
                                          25      3         6         4  þ  25   3  4  þ  6



                     4.25. Prove Cauchy’s generalized mean value theorem.
                              Consider GðxÞ¼ f ðxÞ  f ðaÞ   fgðxÞ  gðaÞg, where   is a constant. Then GðxÞ satisfies the conditions
                          of Rolle’s theorem, provided f ðxÞ and gðxÞ satisfy the continuity and differentiability conditions of Rolle’s
                          theorem and if GðaÞ¼ GðbÞ¼ 0.  Both latter conditions are satisfied if the constant   ¼  f ðbÞ  f ðaÞ .
                              Applying Rolle’s theorem, G ð Þ¼ 0for a <  < b,we have       gðbÞ  gðaÞ
                                                   0
                                                                0
                                          f ð Þ   g ð Þ¼ 0  or  f ð Þ  ¼  f ðbÞ  f ðaÞ ;  a <  < b
                                           0
                                                 0
                                                                0
                                                               g ð Þ  gðbÞ  gðaÞ
                          as required.

                     L’HOSPITAL’S RULE

                     4.26. Prove L’Hospital’s rule for the case of the ‘‘indeterminate forms’’  (a) 0/0,  (b) 1=1.
                          (a)Weshall suppose that f ðxÞ and gðxÞ are differentiable in a < x < b and f ðx 0 Þ¼ 0, gðx 0 Þ¼ 0, where
                              a < x 0 < b.
                                 By Cauchy’s generalized mean value theorem (Problem 25),

                                                                  0
                                                                        x 0 <  < x
                                                  f ðxÞ  f ðxÞ  f ðx 0 Þ  f ð Þ
                                                     ¼          ¼
                                                                  0
                                                  gðxÞ  gðxÞ  gðx 0 Þ  g ð Þ
                              Then
                                                                 0         0
                                                  lim  f ðxÞ  ¼ lim  f ð Þ  ¼ lim  f ðxÞ  ¼ L
                                                                 0         0
                                                 x!x 0 þ gðxÞ  x!x 0 þ g ð Þ  x!x 0 þ g ðxÞ
                              since as x ! x 0 þ,   ! x 0 þ.
                                 Modification of the above procedure can be used to establish the result if x ! x 0  , x ! x 0 ,
                              x !1, x ! 1.
                          (b)Wesuppose that f ðxÞ and gðxÞ are differentiable in a < x < b, and lim f ðxÞ¼ 1, lim gðxÞ¼1
                              where a < x 0 < b.                                x!x 0 þ     x!x 0 þ
                                 Assume x 1 is such that a < x 0 < x < x 1 < b.  By Cauchy’s generalized mean value theorem,
                                                                0
                                                    f ðxÞ  f ðx 1 Þ  f ð Þ
                                                                      x <  < x 1
                                                             ¼
                                                                0
                                                    gðxÞ  gðx 1 Þ  g ð Þ
                              Hence
                                                                              0
                                                  f ðxÞ  f ðx 1 Þ  f ðxÞ 1   f ðx 1 Þ=f ðxÞ  f ð Þ
                                                           ¼               ¼
                                                                              0
                                                  gðxÞ  gðx 1 Þ  gðxÞ 1   gðx 1 Þ=gðxÞ  g ð Þ
   86   87   88   89   90   91   92   93   94   95   96