Page 96 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 96

CHAP. 4]                           DERIVATIVES                                   87

                                  2
                     4.51.  If f ðxÞ¼ x þ 3x, find (a)  y;  ðbÞ dy;  ðcÞ  y= x;  ðdÞ dy=dx; and (e) ð y   dyÞ= x,if x ¼ 1 and
                            x ¼ :01.
                           Ans.  (a).0501,  (b).05,  (c)5.01,  (d)5,  (e).01

                     4.52.  Using differentials, compute approximate values for each of the following:  (a) sin 318;  ðbÞ lnð1:12Þ,
                             p ffiffiffiffiffi
                           (c)  5  36.
                           Ans.  (a)0.515,  (b)0.12,  (c)2.0125
                     4.53.  If y ¼ sin x,evaluate (a)  y;  ðbÞ dy.  (c)Prove that ð y   dyÞ= x ! 0as  x ! 0.

                     DIFFERENTIATION RULES AND ELEMENTARY FUNCTIONS
                                    d            d      d          d            d       d
                     4.54.  Prove: (a)  f f ðxÞþ gðxÞg ¼  f ðxÞþ  gðxÞ;  ðbÞ  f f ðxÞ  gðxÞg ¼  f ðxÞ   gðxÞ,
                                   dx            dx     dx        dx            dx     dx

                               d   f ðxÞ  gðxÞ f ðxÞ  f ðxÞg ðxÞ
                                              0
                                                       0
                           ðcÞ         ¼           2      ;  gðxÞ 6¼ 0:
                               dx gðxÞ
                                               ½gðxފ
                                      d  3   2                    d   2
                     4.55.  Evaluate  (a)  fx lnðx   2x þ 5Þg at x ¼ 1;  ðbÞ  fsin ð3x þ  =6Þg at x ¼ 0.
                                     dx                          dx
                           Ans.  (a)3 ln 4;  3  p ffiffiffi 3
                                           2
                                        ðbÞ
                                              d         du                  d              du
                                                 u
                                                     u
                     4.56.  Derive the formulas:  (a)  a ¼ a ln a  ;  a > 0; a 6¼ 1;  ðbÞ  csc u ¼ csc u cot u  ;
                                              dx        dx                 dx              dx
                               d          2 du
                                tanh u ¼ sech u  where u is a differentiable function of x:
                           ðcÞ
                              dx            dx
                                      d            d            d             d
                     4.57.  Compute  (a)  tan  1  x;  ðbÞ  csc  1  x;  ðcÞ  sinh  1  x;  ðdÞ  coth  1  x, paying attention to the
                                      dx           dx          dx            dx
                           use of principal values.
                                x
                     4.58.  If y ¼ x ,computer dy=dx.  [Hint: Take logarithms before differentiating.]
                                x
                           Ans.  x ð1 þ ln xÞ
                                          1
                     4.59.  If y ¼flnð3x þ 2Þg sin ð2xþ:5Þ , find dy=dx at x ¼ 0:

                                      2ln ln2
                           Ans:      þ  p ffiffiffi  ðln 2Þ  =6
                                 4ln2    3
                                                                dy  dy du dv
                     4.60.  If y ¼ f ðuÞ, where u ¼ gðvÞ and v ¼ hðxÞ,prove that  ¼        assuming f , g; and h are differentiable.
                                                                dx  du dv dx
                                                   2
                                                       2
                     4.61.  Calculate  (a) dy=dx and  (b) d y=dx if xy   ln y ¼ 1.
                                                       4
                                                               3
                                                  3
                                   2
                           Ans.  (a) y =ð1   xyÞ;  ðbÞð3y   2xy Þ=ð1   xyÞ provided xy 6¼ 1
                                                     2
                                                           2
                     4.62.  If y ¼ tan x,prove that y ¼ 2ð1 þ y Þð1 þ 3y Þ.
                                             000
                                                                                 3
                                                                             3
                                                                  2
                                                                      2
                     4.63.  If x ¼ sec t and y ¼ tan t,evaluate (a) dy=dx;  ðbÞ d y=dx ;  ðcÞ d y=dx ,at t ¼  =4.
                                    ffiffiffi             ffiffiffi
                                  p                p
                           Ans.  (a)  2;  ðbÞ  1;  ðcÞ 3 2
                                    2
                                          2
                                   d y   d x     dx   3
                     4.64.  Prove that  ¼         , stating precise conditions under which it holds.
                                   dx 2  dy 2  dy
                     4.65.  Establish formulas  (a)7,  (b) 18, and (c) 27, on Page 71.
                     MEAN VALUE THEOREMS
                     4.66.  Let f ðxÞ¼ 1  ðx   1Þ 2=3 ,0 @ x @ 2. (a) Construct the graph of f ðxÞ.(b) Explain why Rolle’s theorem is
                           not applicable to this function, i.e., there is no value   for which f ð Þ¼ 0, 0 <  < 2.
                                                                           0
   91   92   93   94   95   96   97   98   99   100   101