Page 92 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 92

CHAP. 4]                           DERIVATIVES                                   83


                              from which we see that
                                                             0
                                                       f ðxÞ  f ð Þ 1   gðx 1 Þ=gðxÞ
                                                           ¼                                          ð1Þ
                                                             0
                                                       gðxÞ  g ð Þ 1   f ðx 1 Þ=f ðxÞ
                                                         0
                                  Let us now suppose that lim  f ðxÞ  ¼ L and write (1)as
                                                         0
                                                    x!x 0 þ g ðxÞ

                                                    0
                                            f ðxÞ  f ð Þ   1   gðx 1 Þ=gðxÞ  1   gðx 1 Þ=gðxÞ
                                                        L              þ L
                                                ¼                                                     ð2Þ
                                                    0
                                            gðxÞ   g ð Þ   1   f ðx 1 Þ=f ðxÞ  1   f ðx 1 Þ=f ðxÞ
                                  We can choose x 1 so close to x 0 that j f ð Þ=g ð Þ  Lj < .  Keeping x 1 fixed, we see that
                                                               0
                                                                   0

                                       lim  1   gðx 1 Þ=gðxÞ  ¼ 1  since  lim f ðxÞ¼ 1 and lim gðxÞ¼ 1
                                                                                 x!x 0
                                                                  x!x 0 þ
                                       x!x 0 þ 1   f ðx 1 Þ=f ðxÞ
                                  Then taking the limit as x ! x 0 þ on both sides of (2), we see that, as required,
                                                                         0
                                                       lim  f ðxÞ  ¼ L ¼ lim  f ðxÞ
                                                                         0
                                                       x!x 0 þ gðxÞ  x!x 0 þ g ðxÞ
                                  Appropriate modifications of the above procedure establish the result if x ! x 0  , x ! x 0 ,
                              x !1, x ! 1.
                                          e 2x    1     1 þ cos  x
                     4.27. Evaluate  (a) lim     ðbÞ lim
                                                         2
                                       x!0  x        x!1 x   2x þ 1
                              All of these have the ‘‘indeterminate form’’ 0/0.
                                 e 2x    1  2e 2x
                               lim     ¼ lim   ¼ 2
                           ðaÞ
                               x!0  x   x!0 1
                                                             2
                                  1 þ cos  x      sin  x     cos  x    2
                               lim        ¼ lim       ¼ lim
                           ðbÞ    2                                ¼
                               x!1 x   2x þ 1  x!1 2x   2  x!1  2    2
                                  Note: Here L’Hospital’s rule is applied twice, since the first application again yields the ‘‘indeter-
                              minate form’’ 0/0 and the conditions for L’Hospital’s rule are satisfied once more.
                                            2
                                          3x   x þ 5
                                                              2  x
                     4.28. Evaluate (a) lim           ðbÞ lim x e
                                           2
                                     x!1 5x þ 6x   3     x!1
                              All of these have or can be arranged to have the ‘‘indeterminate form’’ 1=1.
                                    2
                                  3x   x þ 5     6x   1     6   3
                               lim         ¼ lim       ¼ lim
                               x!1 5x þ 6x   3  x!1 10x þ 6  x!1 10  5
                           ðaÞ      2                         ¼
                                            x 2    2x     2
                                   2  x
                               lim x e  ¼ lim  ¼ lim  ¼ lim  ¼ 0
                                        x!1 e  x!1 e   x!1 e
                           ðbÞ              x       x      x
                               x!1
                                       2
                     4.29. Evaluate lim x ln x.
                                  x!0þ
                                                            ln x     1=x        x 2
                                                  2
                                              lim x ln x ¼ lim  ¼ lim    ¼ lim    ¼ 0
                                                        x!0þ 1=x 2  x!0þ  2=x 3  x!0þ 2
                                             x!0þ
                              The given limit has the ‘‘indeterminate form’’ 0  1.Inthe second step the form is altered so as to give
                           the indeterminate form 1=1 and L’Hospital’s rule is then applied.
                                       1=x 2
                     4.30. Find limðcos xÞ  .
                               x!0
                                                     2
                              Since lim cos x ¼ 1 and lim 1=x ¼1,the limit takes the ‘‘indeterminate form’’ 1 .
                                                                                         1
                                  x!0          x!0
   87   88   89   90   91   92   93   94   95   96   97