Page 90 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 90

CHAP. 4]                           DERIVATIVES                                   81

                                                                      f (x)
                                        f ð  þ hÞ  f ð Þ
                              If h > 0, then       @ 0 and
                                             h
                                       lim  f ð  þ hÞ  f ð Þ  @ 0  ð1Þ
                                               h
                                      h!0þ
                                                                                         M
                              If h < 0, then  f ð  þ hÞ  f ð Þ  A 0 and
                                              h
                                       lim  f ð  þ hÞ  f ð Þ  A 0                                     x
                                               h                  ð2Þ        a          ξ         b
                                      h!0
                              But by hypothesis f ðxÞ has a derivative at all points  Fig. 4-9
                           in ða; bÞ.  Then the right-hand derivative (1) must be
                           equal to the left-hand derivative (2). This can happen only if they are both equal to zero, in which case
                           f ð Þ¼ 0as required.
                            0
                              A similar argument can be used in case M ¼ 0 and m 6¼ 0.
                     4.20. Prove the mean value theorem.
                                                        f ðbÞ  f ðaÞ
                                                               .
                                                          b   a
                              Define FðxÞ¼ f ðxÞ  f ðaÞ  ðx   aÞ
                              Then FðaÞ¼ 0 and FðbÞ¼ 0.
                              Also, if f ðxÞ satisfies the conditions on continuity and differentiability specified in Rolle’s theorem, then
                           FðxÞ satisfies them also.
                              Then applying Rolle’s theorem to the function FðxÞ,we obtain
                                             f ðbÞ  f ðaÞ                      f ðbÞ  f ðaÞ
                                                     ¼ 0;  a <  < b  or                ;  a <  < b
                                   0     0                                0
                                               b   a                             b   a
                                  F ð Þ¼ f ð Þ                           f ð Þ¼
                                                               2
                     4.21. Verify the mean value theorem for f ðxÞ¼ 2x   7x þ 10, a ¼ 2, b ¼ 5.
                                             0
                              f ð2Þ¼ 4, f ð5Þ¼ 25, f ð Þ¼ 4    7. Then the mean value theorem states that 4    7 ¼ð25   4Þ=ð5   2Þ
                           or   ¼ 3:5.  Since 2 <  < 5, the theorem is verified.
                     4.22. If f ðxÞ¼ 0at all points of the interval ða; bÞ, prove that f ðxÞ must be a constant in the interval.
                              0
                              Let x 1 < x 2 be any two different points in ða; bÞ.  By the mean value theorem for x 1 <  < x 2 ,

                                                                  ¼ f ð Þ¼ 0
                                                        f ðx 2 Þ  f ðx 1 Þ
                                                                     0
                                                          x 2   x 1
                           Thus, f ðx 1 Þ¼ f ðx 2 Þ¼ constant. From this it follows that if two functions have the same derivative at all
                           points of ða; bÞ,the functions can only differ by a constant.

                     4.23. If f ðxÞ > 0at all points of the interval ða; bÞ, prove that f ðxÞ is strictly increasing.
                              0
                              Let x 1 < x 2 be any two different points in ða; bÞ.By the mean value theorem for x 1 <  < x 2 ,
                                                        f ðx 2 Þ  f ðx 1 Þ
                                                                  ¼ f ð Þ > 0
                                                                     0
                                                          x 2   x 1
                           Then f ðx 2 Þ > f ðx 1 Þ for x 2 > x 1 , and so f ðxÞ is strictly increasing.
                                       b   a      1       1   b   a
                     4.24. (a) Prove that  2  < tan  b   tan  a <  2  if a < b.
                                       1 þ b                  1 þ a
                                          3       1  4     1
                           (b) Show that  þ  < tan   <  þ .
                                       4  25       3   4  6
                                                                                2
                                                               2
                           (a)Let f ðxÞ¼ tan  1 x.  Since f ðxÞ¼ 1=ð1 þ x Þ and f ð Þ¼ 1=ð1 þ   Þ,we have by the mean value
                                                    0
                                                                      0
                              theorem
   85   86   87   88   89   90   91   92   93   94   95