Page 86 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 86

CHAP. 4]                           DERIVATIVES                                   77


                                                      1       1
                                  Since lim f ðxÞ¼ lim   cos þ 2x sin  does not exist (because lim cos 1=x does not exist), f ðxÞ
                                          0
                                                                                                     0
                                      x!0     x!0     x      x                   x!0
                              cannot be continuous at x ¼ 0in spite of the fact that f ð0Þ exists.
                                                                       0
                                  This shows that we cannot calculate f ð0Þ in this case by simply calculating f ðxÞ and putting x ¼ 0,
                                                            0
                                                                                        0
                              as is frequently supposed in elementary calculus.  It is only when the derivative of a function is
                              continuous at a point that this procedure gives the right answer.  This happens to be true for most
                              functions arising in elementary calculus.
                      4.6. Present an ‘‘ ;  ’’ definition of the derivative of f ðxÞ at x ¼ x 0 .
                              f ðxÞ has a derivative f ðx 0 Þ at x ¼ x 0 if, given any  > 0, we can find  > 0suchthat
                                              0

                                                            f ðx 0 Þ <   when  0 < jhj <

                                              f ðx 0 þ hÞ  f ðx 0 Þ
                                                             0

                                                   h

                     RIGHT- AND LEFT-HAND DERIVATIVES
                      4.7. Let f ðxÞ¼jxj.(a) Calculate the right-hand derivatives of f ðxÞ at x ¼ 0. (b) Calculate the left-
                           hand derivative of f ðxÞ at x ¼ 0.  (c) Does f ðxÞ have a derivative at x ¼ 0? (d) Illustrate the
                           conclusions in (a), (b), and (c) from a graph.
                                                                                     y
                                                     jhj  0     h
                              f þ ð0Þ¼ lim  f ðhÞ  f ð0Þ  ¼ lim  ¼ lim  ¼ 1
                               0
                           ðaÞ
                                           h           h    h!0þ h
                                    h!0þ          h!0þ
                              since jhj¼ h for h > 0.                          y =  _    y = x
                                                                                 x
                                                     jhj  0      h
                              f   ð0Þ¼ lim  f ðhÞ  f ð0Þ  ¼ lim  ¼ lim  ¼ 1
                               0
                                           h           h    h!0  h
                           ðbÞ
                                    h!0           h!0                                                 x
                              since jhj¼  h for h < 0.
                                                                                     Fig. 4-8
                           (c)  No.  The derivative at 0 does not exist if the right and
                              left hand derivatives are unequal.
                           (d) The required graph is shown in the adjoining Fig. 4-8.
                              Note that the slopes of the lines y ¼ x and y ¼ x are 1 and  1 respectively, representing the right and
                              left hand derivatives at x ¼ 0.  However, the derivative at x ¼ 0 does not exist.
                                          2
                      4.8. Prove that f ðxÞ¼ x is differentiable in 0 @ x @ 1.
                              Let x 0 be any value such that 0 < x 0 < 1.  Then
                                                                       2   2
                                                                 ðx 0 þ hÞ   x 0
                                       f ðx 0 Þ¼ lim         ¼ lim          ¼ limð2x 0 þ hÞ¼ 2x 0
                                                f ðx 0 þ hÞ  f ðx 0 Þ
                                        0
                                             h!0      h        h!0    h      h!0
                              At the end point x ¼ 0,
                                                                        2
                                                                       h   0
                                             f þ ð0Þ¼ lim  f ð0 þ hÞ  f ð0Þ  ¼ lim  ¼ lim h ¼ 0
                                              0
                                                           h             h
                                                   h!0þ            h!0þ       h!0þ
                              At the end point x ¼ 1,
                                                                        2
                                                                   ð1 þ hÞ   1
                                         f   ð1Þ¼ lim  f ð1 þ hÞ  f ð1Þ  ¼ lim  ¼ lim ð2 þ hÞ¼ 2
                                          0
                                                        h              h
                                               h!0              h!0           h!0
                              Then f ðxÞ is differentiable in 0 @ x @ 1.  We may write f ðxÞ¼ 2x for any x in this interval.  It is
                                                                         0
                           customary to write f þ ð0Þ¼ f ð0Þ and f   ð1Þ¼ f ð1Þ in this case.
                                                            0
                                          0
                                                0
                                                       0
   81   82   83   84   85   86   87   88   89   90   91