Page 84 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 84

CHAP. 4]                           DERIVATIVES                                   75


                     where the two representations of the slope of the tangent line have been equated. The solution of this
                     relation for x 1 is

                                                                f ðx 0 Þ
                                                        x 1 ¼ x 0
                                                                 0
                                                                f ðx 0 Þ
                        Starting with the tangent line to the graph at P 1 ½x 1 ; f ðx 1 ފ and repeating the process, we get
                                                       f ðx 1 Þ    f ðx 0 Þ  f ðx 1 Þ
                                               x 2 ¼ x 1    ¼ x 0
                                                        0          0      0
                                                       f ðx 1 Þ   f ðx 0 Þ  f ðx 1 Þ
                     and in general
                                                               n
                                                              X
                                                                  f ðx k Þ
                                                      x n ¼ x 0
                                                                   0
                                                               k¼0  f ðx k Þ
                        Under appropriate circumstances, the approximation x n to the root r can be made as good as
                     desired.
                        Note: Success with Newton’s method depends on the shape of the function’s graph in the neighbor-
                     hood of the root.  There are various cases which have not been explored here.






                                                     Solved Problems


                     DERIVATIVES
                                       3 þ x
                                           , x 6¼ 3.  Evaluate f ð2Þ from the definition.
                                                            0
                      4.1. (a) Let f ðxÞ¼
                                       3   x

                                                             1 5 þ h        1  6h       6
                                     f ð2Þ¼ lim  f ð2 þ hÞ  f ð2Þ  ¼ lim    5 ¼ lim    ¼ lim  ¼ 6
                                      0
                                           h!0    h       h!0 h 1   h    h!0 h 1   h  h!0 1   h
                                  Note:Byusing rules of differentiation we find
                                               d             d
                                              dx             dx       ð3   xÞð1Þ ð3 þ xÞð 1Þ
                                         ð3   xÞ  ð3 þ xÞ ð3 þ xÞ  ð3   xÞ                 6
                                     0
                                                        2                       2             2
                                    f ðxÞ¼                          ¼                  ¼
                                                    ð3   xÞ                ð3   xÞ       ð3   xÞ
                              at all points x where the derivative exists. Putting x ¼ 2, we find f ð2Þ¼ 6. Although such rules are
                                                                               0
                              often useful, one must be careful not to apply them indiscriminately (see Problem 4.5).
                                        ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                       p
                                        2x   1. Evaluate f ð5Þ from the definition.
                                                         0
                           (b) Let f ðxÞ¼
                                                           p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                            9 þ 2h   3
                                   f ð5Þ¼ lim  f ð5 þ hÞ  f ð5Þ  ¼ lim
                                    0
                                         h!0    h       h!0    h
                                            p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                             9 þ 2h   3  9 þ 2h þ 3  9 þ 2h   9        2      1
                                       ¼ lim           p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ¼ lim  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ¼ lim p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ¼
                                         h!0    h      9 þ 2h þ 3  h!0 hð 9 þ 2h þ 3Þ  h!0  9 þ 2h þ 3  3
                                                                         d                  1=2 d
                                                                    0           1=2  1
                                                                                    2
                                  By using rules of differentiation we find f ðxÞ¼  dx  ð2x   1Þ  ¼ ð2x   1Þ  dx  ð2x   1Þ¼
                                     1=2      0     1=2  1
                                                        3
                              ð2x   1Þ  .  Then f ð5Þ¼ 9  ¼ .
                                                                              3
                                                                                   2
                      4.2. (a) Show directly from definition that the derivative of f ðxÞ¼ x is 3x .
                                                             1
                                                    d p ffiffiffi
                           (b) Show from definition that  xÞ¼ p ffiffiffi.
                                                   dx      2 x
   79   80   81   82   83   84   85   86   87   88   89