Page 94 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 94

CHAP. 4]                           DERIVATIVES                                   85


                     MISCELLANEOUS PROBLEMS
                                                                                     2
                                                                                         2
                     4.34. If x ¼ gðtÞ and y ¼ f ðtÞ are twice differentiable, find  (a) dy=dx;  ðbÞ d y=dx .
                           (a)Letting primes denote derivatives with respect to t,we have
                                                     dy  dy=dt  0
                                                                     if g ðtÞ 6¼ 0
                                                               f ðtÞ
                                                                        0
                                                     dx  ¼  dx=dt  ¼  g ðtÞ
                                                                0

                                                     d  f ðtÞ  d  f ðtÞ
                                                                   0
                                                         0
                                2
                               d y  d    dy     d    f ðtÞ    dt  g ðtÞ  dt  g ðtÞ
                                                0
                                                         0
                                                                   0
                           ðbÞ  2  ¼      ¼        ¼         ¼
                               dx  dx dx   dx g ðtÞ    dx=dt     g ðtÞ
                                                                  0
                                                0
                                    1    g ðtÞf ðtÞ  f ðtÞg ðtÞ    g ðtÞf ðtÞ  f ðtÞg ðtÞ
                                                              00
                                                           0
                                         0
                                                                   0
                                                 0
                                                    00
                                                                       00
                                            00
                                                                             if g ðtÞ 6¼ 0
                                                                                0
                                                 2                 3
                                 ¼                      ¼
                                    0
                                              0                  0
                                   g ðtÞ     ½g ðtފ           ½g ðtފ
                                        1=x 2
                                     e   ;  x 6¼ 0           (a) f ð0Þ¼ 0;     00
                                                                  0
                     4.35. Let f ðxÞ¼            .Prove that              ðbÞ f ð0Þ¼ 0.
                                     0;     x ¼ 0
                                                     e  1=h 2    0  e  1=h 2
                              f þ ð0Þ¼ lim  f ðhÞ  f ð0Þ  ¼ lim  ¼ lim
                               0
                                           h            h           h
                           ðaÞ
                                    h!0þ          h!0þ        h!0þ
                              If h ¼ 1=u,using L’Hospital’s rule this limit equals
                                                         2       u 2        u 2
                                                        u
                                                   lim ue  ¼ lim u=e ¼ lim 1=2ue ¼ 0
                                                  u!1      u!1      u!1
                                  Similarly, replacing h ! 0þ by h ! 0  and u !1 by u ! 1,we find f   ð0Þ¼ 0.  Thus
                                                                                           0
                              f þ ð0Þ¼ f   ð0Þ¼ 0, and so f ð0Þ¼ 0.
                               0
                                     0
                                                  0
                                                          2                 2
                                         0    0        e  1=h    2h  3    0  2e  1=h  2u 4
                              f þ ð0Þ¼ lim  f ðhÞ  f ð0Þ  ¼ lim   ¼ lim      ¼ lim  2 ¼ 0
                               00
                           ðbÞ                                            4
                                            h               h            h     u!1 e u
                                    h!0þ           h!0þ             h!0þ
                              by successive applications of L’Hospital’s rule.
                                  Similarly, f   ð0Þ¼ 0 and so f ð0Þ¼ 0.
                                                       00
                                          00
                                  In general, f  ðnÞ ð0Þ¼ 0for n ¼ 1; 2; 3; .. .
                     4.36. Find the length of the longest ladder which can be carried around the corner of a corridor, whose
                           dimensions are indicated in the figure below, if it is assumed that the ladder is carried parallel to
                           the floor.
                                                                                     A                O
                              The length of the longest ladder is the same as the shortest
                           straight line segment AB [Fig. 4-10], which touches both outer
                                                                                a
                           walls and the corner formed by the inner walls.            a sec

                              As seen from Fig. 4-10, the length of the ladder AB is
                                            L ¼ a sec   þ b csc
                              L is a minimum when                                              b csc
                                      dL=d  ¼ a sec   tan     b csc   cot   ¼ 0
                                                                                                      B
                                         3
                                                 3
                           i.e.;      a sin   ¼ b cos    or  tan   ¼  p ffiffiffiffiffiffiffiffi                 b
                                                                 3
                                                                  b=a
                                        p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                         a 2=3  þ b 2=3    a 2=3  þ b 2=3
                           Then   sec   ¼        ;   csc   ¼                            Fig. 4-10
                                           a 1=3             b 1=3
                           so that     L ¼ a sec   þ b csc   ¼ða 2=3  þ b 2=3 3=2
                                                               Þ
                              Although it is geometrically evident that this gives the minimum length, we can prove this analytically
                                            2
                                        2
                           by showing that d L=d  for   ¼ tan  1  p ffiffiffiffiffiffiffiffi
                                                        3
                                                         b=a is positive (see Problem 4.78).
   89   90   91   92   93   94   95   96   97   98   99