Page 97 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 97

88                                 DERIVATIVES                             [CHAP. 4


                                                          2
                                                    2
                     4.67.  Verify Rolle’s theorem for f ðxÞ¼ x ð1   xÞ ,0 @ x @ 1.
                                                                                        x
                                                         x
                     4.68.  Prove that between any two real roots of e sin x ¼ 1there is at least one real root of e cos x ¼ 1. [Hint:
                          Apply Rolle’s theorem to the function e  x    sin x:Š
                     4.69.  (a)If 0 < a < b,prove that ð1   a=bÞ < ln b=a < ðb=a   1Þ
                                                               1
                                                      1
                          (b)Use the result of (a)toshow that < ln 1:2 < .
                                                      6
                                                               5
                                        p ffiffiffi     1
                     4.70.  Prove that ð =6 þ  3=15Þ < sin  :6 < ð =6 þ 1=8Þ by using the mean value theorem.
                     4.71.  Show that the function FðxÞ in Problem 4.20(a) represents the difference in ordinants of curve ACB and line
                          AB at any point x in ða; bÞ.
                     4.72.  (a)If f ðxÞ @ 0atall points of ða; bÞ,prove that f ðxÞ is monotonic decreasing in ða; bÞ.
                                0
                          (b) Under what conditions is f ðxÞ strictly decreasing in ða; bÞ?
                     4.73.  (a)Prove that ðsin xÞ=x is strictly decreasing in ð0; =2Þ.  (b)Prove that 0 @ sin x @ 2x=  for
                          0 @ x @  =2.
                                      sin b   sin a
                     4.74.  (a)Prove that      ¼ cot  , where   is between a and b.
                                     cos a   cos b
                          (b)By placing a ¼ 0 and b ¼ x in (a), show that   ¼ x=2.  Does the result hold if x < 0?
                     L’HOSPITAL’S RULE
                     4.75.  Evaluate each of the following limits.
                                 x   sin x                                                       x þ 3
                                                            3
                          (a)  lim                   (e) lim x ln x  (i) limð1=x   csc xÞ  (m) lim x ln
                              x!0  x 3                  x!0þ           x!0               x!1    x   3
                                                                                                   2
                                      2x
                                                                                                  1=x
                                           x
                                     e    2e þ 1                                            sin x

                                                               x
                                                            x
                          (b)  lim                   ( f ) limð3   2 Þ=x  ( j) lim x sin x  (n) lim
                              x!0 cos 3x   2cos 2x þ cos x  x!0        x!0               x!0  x
                                   2
                                                                                                   2x 1=x
                                                                                                x
                                                                                  2
                                                                             2
                          (c)  lim ðx   1Þ tan  x=2  (g) lim ð1   3=xÞ 2x  ðkÞ limð1=x   cot xÞ (o) lim ðx þ e þ e Þ
                                                                       x!0
                              x!1þ                      x!1                             x!1
                                                                          tan  1  x   sin  1  x
                                   3  2x
                          (d)  lim x e               (h) lim ð1 þ 2xÞ 1=3x  (l) lim     (p) lim ðsin xÞ 1= ln x
                                                                       x!0
                              x!1                       x!1                 xð1   cos xÞ  x!0þ
                                                                                   6
                          Ans.(a)  1 6  ;  ðbÞ  1;  ðcÞ  4= ;  ðdÞ 0;  ðeÞ 0;  ð f Þ ln 3=2;  ðgÞ e ;  ðhÞ 1;  ðiÞ 0;  ð jÞ 1,
                                                          2
                          (k)  2  ;  1  ;  ðmÞ 6;  ðnÞ e  1=6 ;  ðoÞ e ;  ð pÞ e
                             3   ðlÞ  3
                     MISCELLANEOUS PROBLEMS
                                   r ffiffiffiffiffiffiffiffiffiffiffi
                                    1   x
                     4.76.  Prove that  <  lnð1 þ xÞ  < 1if0 < x < 1.
                                    1 þ x  sin  1  x
                                                                          2
                     4.77.  If  f ðxÞ¼ f ðx þ  xÞ  f ðxÞ,  (a)Prove that  f f ðxÞg ¼   f ðxÞ¼ f ðx þ 2 xÞ  2f ðx þ  xÞþ f ðxÞ,
                                                                                             n
                                                 n
                          (b)derive an expression for   f ðxÞ where n is any positive integer,  (c)show that lim    f ðxÞ  ¼ f  ðnÞ ðxÞ
                                                                                                n
                                                                                         x!0 ð xÞ
                          if this limit exists.
                     4.78.  Complete the analytic proof mentioned at the end of Problem 4.36.
                                                                2
                     4.79.  Find the relative maximum and minima of f ðxÞ¼ x , x > 0.
                                                             1
                          Ans. f ðxÞ has a relative minimum when x ¼ e .
                                                            3
                     4.80.  A train moves according to the rule x ¼ 5t þ 30t, where t and x are measured in hours and miles,
                          respectively.  (a) What is the acceleration after 1 minute? (b) What is the speed after 2 hours?
                                                                           2
                     4.81.  A stone thrown vertically upward has the law of motion x ¼ 16t þ 96t.  (Assume that the stone is at
                          ground level at t ¼ 0, that t is measured in seconds, and that x is measured in feet.) (a) What is the height of
                          the stone at t ¼ 2 seconds?  (b)To what height does the stone rise? (c) What is the initial velocity, and
                          what is the maximum speed attained?
   92   93   94   95   96   97   98   99   100   101   102