Page 95 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 95

86                                 DERIVATIVES                             [CHAP. 4


                                                Supplementary Problems


                     DERIVATIVES
                     4.37.  Use the definition to compute the derivatives of each of the following functions at the indicated point:
                                                         2
                                                     3
                                                                                        3
                          (a) ð3x   4Þ=ð2x þ 3Þ; x ¼ 1;  ðbÞ x   3x þ 2x   5; x ¼ 2;  ðcÞ  p x; x ¼ 4;  ðdÞ  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                         6x   4; x ¼ 2:
                                                                            ffiffiffi
                                                1
                          Ans.(a) 17/25,  (b)2,  (c) ,(d)  1
                                                4     2
                                                  d             d 3 þ x   6
                                                     4
                                                         3
                     4.38.  Show from definition that  (a)  x ¼ 4x ;  ðbÞ  ¼   ; x 6¼ 3
                                                  dx            dx 3   x     2
                                                                        ð3   xÞ
                                     3
                                    x sin 1=x; x 6¼ 0
                     4.39.  Let f ðxÞ¼           .Prove that (a) f ðxÞ is continuous at x ¼ 0, (b) f ðxÞ has a derivative at
                                    0;       x ¼ 0
                          x ¼ 0,  (c) f ðxÞ is continuous at x ¼ 0.
                                    0
                                       1=x 2
                                    xe   ; x 6¼ 0
                     4.40.  Let f ðxÞ¼         .  Determine whether f ðxÞ (a)iscontinuous at x ¼ 0, (b) has a derivative at
                                    0;     x ¼ 0
                          x ¼ 0:
                          Ans.(a)Yes;  (b)Yes, 0
                     4.41.  Give an alternative proof of the theorem in Problem 4.3, Page 76, using ‘‘ ;   definitions’’.
                                                                        h
                                  x
                     4.42.  If f ðxÞ¼ e ,show that f ðx 0 Þ¼ e x 0  depends on the result limðe   1Þ=h ¼ 1.
                                            0
                                                                    h!0
                     4.43.  Use the results limðsin hÞ=h ¼ 1, limð1   cos hÞ=h ¼ 0toprove that if f ðxÞ¼ sin x, f ðx 0 Þ¼ cos x 0 .
                                                                                       0
                                      h!0         h!0
                     RIGHT- AND LEFT-HAND DERIVATIVES
                     4.44.  Let f ðxÞ¼ xjxj.  (a) Calculate the right-hand derivative of f ðxÞ at x ¼ 0.  (b) Calculate the left-hand
                          derivative of f ðxÞ at x ¼ 0. (c) Does f ðxÞ have a derivative at x ¼ 0? (d) Illustrate the conclusions in ðaÞ,
                          (b), and (c) from a graph.
                          Ans.(a)0;  (b)0;  (c)Yes, 0
                                                                         p
                     4.45.  Discuss the (a)continuity and (b)differentiability of f ðxÞ¼ x sin 1=x, f ð0Þ¼ 0, where p is any positive
                          number.  What happens in case p is any real number?

                                    2x   3;  0 @ x @ 2
                     4.46.  Let f ðxÞ¼  2          .  Discuss the (a)continuity and (b)differentiability of f ðxÞ in
                                    x   3;  2 < x @ 4
                          0 @ x @ 4.
                     4.47.  Prove that the derivative of f ðxÞ at x ¼ x 0 exists if and only if f þ ðx 0 Þ¼ f   ðx 0 Þ.
                                                                         0
                                                                                0
                                               2
                                            3
                     4.48.  (a)Prove that f ðxÞ¼ x   x þ 5x   6isdifferentiable in a @ x @ b, where a and b are any constants.
                                                                         2
                                                                     3
                          (b)Find equations for the tangent lines to the curve y ¼ x   x þ 5x   6at x ¼ 0 and x ¼ 1.  Illustrate
                          by means of a graph.  (c)Determine the point of intersection of the tangent lines in (b).  (d)Find
                          f ðxÞ; f ðxÞ; f ðxÞ; f  ðIVÞ ðxÞ; .. . .
                                    000
                           0
                                00
                                                                    2
                          Ans.(b) y ¼ 5x   6; y ¼ 6x   7;  ðcÞð1;  1Þ;  ðdÞ 3x   2x þ 5; 6x   2; 6; 0; 0; 0; ...
                                  2
                     4.49.  If f ðxÞ¼ x jxj,discuss the existence of successive derivatives of f ðxÞ at x ¼ 0.
                     DIFFERENTIALS
                     4.50.  If y ¼ f ðxÞ¼ x þ 1=x, find  (a)  y;  ðbÞ dy;  ðcÞ  y   dy;  ðdÞð y   dyÞ= x;  ðeÞ dy=dx.
                                                                       2
                                          x             1                           x           1
                          Ans:  ðaÞ  x        ;  ðbÞ  1     x;  ðcÞ  ð xÞ  ;  ðdÞ       ;  ðeÞ 1    :
                                                       x 2         2             2              x 2
                                      xðx þ  xÞ                   x ðx þ  xÞ    x ðx þ  xÞ
                          Note:  x ¼ dx.
   90   91   92   93   94   95   96   97   98   99   100