Page 146 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 146

135
                                                FIRST-ORDER CIRCUITS
               CHAP. 7]
               EXAMPLE 7.6 In Fig. 7-12 the 9-mF capacitor is connected to the circuit at t ¼ 0.  At this time, capacitor voltage
               is v 0 ¼ 17 V. Find v A , v B , v C , i AB , i AC , and i BC for t > 0:



















                                                        Fig. 7-12
                   Apply KCL at nodes A, B, and C for t > 0 to find voltages in term of i:

                                        1  1  1     1     1
                   Node A:               þ þ    v A    v B    v C ¼ 0  or  6v A   3v B   v C ¼ 0     (11)
                                        2  3  6     2     6

                                  1      1  1          1
                                                                                            3
                                                    3
                   Node B:         v A þ  þ   v B   10 i    v C ¼ 0  or    2v A þ 3v B   v C ¼ð4   10 Þi  (12)
                                  2      2  4          4

                                     1     1     1   1  1
                   Node C:             v A    v B þ  þ þ   v C ¼ 0  or     2v A   3v B þ 6v C ¼ 0    (13)
                                     6     4     4   6  12
               Solving (11), (12), and (13) simultaneously,
                                                                            3
                                                               3
                                                 3
                                                                        8
                                              7
                                          v A ¼ ð10 Þi  v B ¼  34  ð10 Þi  v C ¼ ð10 Þi
                                              3            9            3
                   The circuit as seen by the capacitor is equivalent to a resistor R ¼ v B =i ¼ 34=9k
.  The capacitor discharges
                                                                             3
                                                                                     6
               its initial voltage V 0 in an exponential form with a time constant   ¼ RC ¼  34 ð10 Þð9   10 Þ¼ 0:034 s.  For t > 0,
                                                                          9
               the voltages and currents are
                                               v B ¼ V 0 e  t=   ¼ 17e  1000t=34  ðVÞ
                                      dv B            3     1000t=34       3   1000t=34
                                i ¼ C     ¼ð9   17   10 =34Þe    ¼ð4:5   10 Þe      ðAÞ
                                       dt
                                        3
                                                                      3
                                     7
                                                                  8
                                 v A ¼ ð10 Þi ¼ 10:5e  1000t=34  ðVÞ  v C ¼ ð10 Þi ¼ 12e  1000t=34  ðVÞ
                                     3                            3
                                                                                 3
                         v AB ¼ v A   v B ¼ 6:5e  1000t=34  ðVÞ  i AB ¼ v AB =2000 ¼ð 3:25   10 Þe  1000t=34  ðAÞ
                                                                                  3
                         v AC ¼ v A   v C ¼ 1:5e  1000t=34  ðVÞ  i AC ¼ v AC =6000 ¼ð 0:25   10 Þe  1000t=34  ðAÞ
                                                                                3
                         v BC ¼ v B   v C ¼ 5e  1000t=34  ðVÞ  i BC ¼ v BC =4000 ¼ð1:25   10 Þe  1000t=34  ðAÞ
               All voltages and currents are exponential functions and have the same time constant.  For simplicity, it is custom-
               ary to use units of V, mA, k
, and ms for voltage, current, resistance, and time, respectively, so that the multipliers
               1000 and 10  3  can be omitted from the equations as summarized below.
                              v A ¼ 10:5e  t=34  ðVÞ  v AB ¼ 6:5e  t=34  ðVÞ  i AB ¼ 3:25e  t=34  ðmAÞ
                              v B ¼ 17e  t=34  ðVÞ  v AC ¼ 1:5e  t=34  ðVÞ  i AC ¼ 0:25e  t=34  ðmAÞ
                              v C ¼ 12e  t=34  ðVÞ  v BC ¼ 5e  t=34  ðVÞ  i BC ¼ 1:25e  t=34  ðmAÞ
                               i ¼ 4:5e  t=34  ðmAÞ
   141   142   143   144   145   146   147   148   149   150   151