Page 164 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 164

FIRST-ORDER CIRCUITS
               CHAP. 7]












                                                        Fig. 7-32                                    153

                                                                    di 1
                                                  10ði 1 þ i 2 Þþ 5i 1 þ 0:01  ¼ 100                 ð24Þ
                                                                    dt
                                                          10ði 1 þ i 2 Þþ 5i 2 ¼ 100                 ð25Þ
                     From (25), i 2 ¼ð100   10i 1 Þ=15.  Substituting in (24),
                                                       di 1
                                                          þ 833i 1 ¼ 3333                            ð26Þ
                                                        dt
                         The steady-state solution (particular solution) of (26)is i 1 ð1Þ ¼ 3333=833 ¼ 4:0 A; hence

                                                      i 1 ¼ Ae   833t  þ 4:0 ðAÞ

                                               þ
                     The initial condition i 1 ð0 Þ¼ i 1 ð0 Þ¼ 0 now gives A ¼ 4:0 A, so that
                                      i 1 ¼ 4:0ð1   e  833t Þ  ðAÞ  and  i 2 ¼ 4:0 þ 2:67e  833t  ðAÞ
                     Alternate Method
                         When the rest of the circuit is viewed from the terminals of the inductance, there is equivalent resistance

                                                             5ð10Þ
                                                     R eq ¼ 5 þ  ¼ 8:33
                                                              15
                                           1
                     Then 1=  ¼ R eq =L ¼ 833 s .At t ¼1, the circuit resistance is
                                                              5ð5Þ
                                                     R T ¼ 10 þ  ¼ 12:5
                                                              10
                     so that the total current is i T ¼ 100=12:5 ¼ 8 A.  And, at t ¼1, this divides equally between the two 5-
                     resistors, yielding a final inductor current of 4 A.  Consequently,
                                                    i L ¼ i 1 ¼ 4ð1   e  833t ÞðAÞ




               7.19  A series RL circuit, with R ¼ 50 
 and L ¼ 0:2 H, has a sinusoidal voltage
                                                 v ¼ 150 sin ð500t þ 0:785ÞðVÞ
                     applied at t ¼ 0.  Obtain the current for t > 0.
                         The circuit equation for t > 0is
                                                  di
                                                    þ 250i ¼ 750 sin ð500t þ 0:785Þ                  ð27Þ
                                                  dt
                     The solution is in two parts, the complementary function (i c ) and the particular solution ði p Þ, so that
                     i ¼ i c þ i p . The complementary function is the general solution of (27) when the right-hand side is replaced
                     by zero: i c ¼ ke  250t .  The method of undetermined coefficients for obtaining i p consists in assuming that
                                                    i p ¼ A cos 500t þ B sin 500t
                     since the right-hand side of (27) can also be expressed as a linear combination of these two functions. Then
   159   160   161   162   163   164   165   166   167   168   169