Page 165 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 165

FIRST-ORDER CIRCUITS
               154
                                                di p                                            [CHAP. 7
                                                   ¼ 500A sin 500t þ 500B cos 500t
                                                 dt
                     Substituting these expressions for i p and di p =dt into (27) and expanding the right-hand side,
                           500A sin 500t þ 500B cos 500t þ 250A cos 500t þ 250B sin 500t ¼ 530:3 cos 500t þ 530:3 sin 500t
                     Now equating the coefficients of like terms,
                                         500A þ 250B ¼ 530:3  and   500B þ 250A ¼ 530:3
                     Solving these simultaneous equations, A ¼ 0:4243 A, B ¼ 1:273 A.
                                    i p ¼ 0:4243 cos 500t þ 1:273 sin 500t ¼ 1:342 sin ð500t   0:322ÞðAÞ
                     and                   i ¼ i c þ i p ¼ ke  250t  þ 1:342 sin ð500t   0:322Þ  ðAÞ

                     At t ¼ 0, i ¼ 0.  Applying this condition, k ¼ 0:425 A, and, finally,
                                             i ¼ 0:425e  250t  þ 1:342 sin ð500t   0:322Þ  ðAÞ



               7.20  For the circuit of Fig. 7-33, obtain the current i L , for all values of t.













                                                        Fig. 7-33

                         For t < 0, the 50-V source results in inductor current 50=20 ¼ 2:5 A. The 5-A current source is applied
                     for t > 0. As t !1, this current divides equally between the two 10-
 resistors, whence i L ð1Þ ¼  2:5A.
                     The time constant of the circuit is
                                                              3
                                                       0:2   10  H  1
                                                      ¼          ¼     ms
                                                          20 
     100

                                                þ
                     and so, with t in ms and using i L ð0 Þ¼ i L ð0 Þ¼ 2:5A,
                                                þ
                                         i L ¼½i L ð0 Þ  i L ð1ފe  t=   þ i L ð1Þ ¼ 5:0e  100t    2:5  ðAÞ
                         Finally, using unit step functions to combine the expressions for t < 0 and t > 0,
                                               i L ¼ 2:5uð tÞþð5:0e  100t    2:5ÞuðtÞ  ðAÞ




               7.21  The switch in Fig. 7-34 has been in position 1 for a long time; it is moved to 2 at t ¼ 0.  Obtain
                     the expression for i, for t > 0.

                                                                                                þ

                         With the switch on 1, ið0 Þ¼ 50=40 ¼ 1:25 A. With an inductance in the circuit, ið0 Þ¼ ið0 Þ.  Long
                     after the switch has been moved to 2, ið1Þ ¼ 10=40 ¼ 0:25 A.  In the above notation,
                                                                     þ
                                            B ¼ ið1Þ ¼ 0:25 A  A ¼ ið0 Þ  B ¼ 1:00 A
                     and the time constant is   ¼ L=R ¼ð1=2000Þ s.  Then, for t > 0,
                                                    i ¼ 1:00e  2000t  þ 0:25  ðAÞ
   160   161   162   163   164   165   166   167   168   169   170