Page 148 - Science at the nanoscale
P. 148

8:11
                   June 9, 2009
                              Low-Dimensional Nanostructures
                         138
                                   Further Reading
                                   C. Kittel, Introduction to Solid State Physics (Wiley, 2005), especially
                                      Chapter 18 by P. L. McEuenin in 8th edition only.
                                   John H. Davies, The Physics of Low-dimensional Semiconductors
                                      (Cambridge, 1998).
                                   L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha,
                                     R. M. Westervelt, and N. S. Wingreen, Electron transport
                                     in quantum dots, Proceedings of the NATO Advanced Study
                                     Institute on Mesoscopic Electron Transport, edited by L. L. Sohn,
                                     L. P. Kouwenhoven and G. Sch¨on (Kluwer Series E345, 1997).
                                   K. Berggren and M. Pepper, New directions with fewer dimen-
                                     sions, Physics World, October 2002, 37.
                                   M. Dragoman and D. Dragoman, Nanoelectronics: Principles and
                                     Devices (Artech House, Boston, 2006).
                                   S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge
                                     University Press, 1995).
                                   R. Saito et al., Physical Properties of Carbon Nanotubes (Imperial
                                     College, 1998).
                                   M. S. Dresselhaus et al., Carbon Nanotubes (Springer, 2001).
                                   S. Reich et al., Carbon Nanotubes (Wiley-VCH, 2004).
                                   P. L. McEuen et al., “Single-walled carbon nanotube electronics,”
                                      IEEE Transactions on Nanotechnology, 1, 78 (2002).
                                   Ph. Avouris et al., ”Carbon nanotube electronics”, Proceedings of
                                      the IEEE, 91, 1772 (2003).
                                   Exercises         RPS: PSP0007 - Science-at-Nanoscale           ch06
                                       6.1 (i) Calculate the energy relative to the Fermi energy for
                                          which the Fermi function equals 5%. Write the answer in
                                          units of kT. (ii) For intrinsic (undoped) silicon with a band
                                          gap of 1.1eV at 1500 K, what is the population of conduc-
                                          tion electrons (m −3 )? Comment on your result. Note that
                                          the melting point of silicon is 1687 K, and atom density of
                                          silicon is 5 × 10 28  atoms m −3 .
                                       6.2 Calculate the number of states per unit energy in a 100
                                          by 100 by 10 nm piece of silicon (m = 1.08m 0 ) 100 meV
                                                                          ∗
                                          above the conduction band edge. Write the result in units
                                          of eV −1 .
   143   144   145   146   147   148   149   150   151   152   153