Page 148 - Science at the nanoscale
P. 148
8:11
June 9, 2009
Low-Dimensional Nanostructures
138
Further Reading
C. Kittel, Introduction to Solid State Physics (Wiley, 2005), especially
Chapter 18 by P. L. McEuenin in 8th edition only.
John H. Davies, The Physics of Low-dimensional Semiconductors
(Cambridge, 1998).
L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha,
R. M. Westervelt, and N. S. Wingreen, Electron transport
in quantum dots, Proceedings of the NATO Advanced Study
Institute on Mesoscopic Electron Transport, edited by L. L. Sohn,
L. P. Kouwenhoven and G. Sch¨on (Kluwer Series E345, 1997).
K. Berggren and M. Pepper, New directions with fewer dimen-
sions, Physics World, October 2002, 37.
M. Dragoman and D. Dragoman, Nanoelectronics: Principles and
Devices (Artech House, Boston, 2006).
S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge
University Press, 1995).
R. Saito et al., Physical Properties of Carbon Nanotubes (Imperial
College, 1998).
M. S. Dresselhaus et al., Carbon Nanotubes (Springer, 2001).
S. Reich et al., Carbon Nanotubes (Wiley-VCH, 2004).
P. L. McEuen et al., “Single-walled carbon nanotube electronics,”
IEEE Transactions on Nanotechnology, 1, 78 (2002).
Ph. Avouris et al., ”Carbon nanotube electronics”, Proceedings of
the IEEE, 91, 1772 (2003).
Exercises RPS: PSP0007 - Science-at-Nanoscale ch06
6.1 (i) Calculate the energy relative to the Fermi energy for
which the Fermi function equals 5%. Write the answer in
units of kT. (ii) For intrinsic (undoped) silicon with a band
gap of 1.1eV at 1500 K, what is the population of conduc-
tion electrons (m −3 )? Comment on your result. Note that
the melting point of silicon is 1687 K, and atom density of
silicon is 5 × 10 28 atoms m −3 .
6.2 Calculate the number of states per unit energy in a 100
by 100 by 10 nm piece of silicon (m = 1.08m 0 ) 100 meV
∗
above the conduction band edge. Write the result in units
of eV −1 .

