Page 125 - Semiconductor For Micro- and Nanotechnology An Introduction For Engineers
P. 125

The Electronic System
                             variances as (3.9) and (3.10).  We recall the transformation
                                    ⁄
                             q =  — ( mω)ξ  , thus we have the momentum operator given by
                                      ⁄
                                                   ⁄
                                                       ⁄
                             p ˆ =  – i— ddq =  ( mω) — ddξ  . Since the potential is symmetric
                             about  q =  0   we have  q ˆ 〈〉 =  0   and  p ˆ 〈〉 =  0  . We calculate  q ˆ 〈  2 〉   and
                              p ˆ 〈  2  : 〉
                                                ∞
                                             1
                                         —
                                              12∫
                                  q ˆ 〈  2 〉 =  ----------------------- exp  – ξ 2   2   – ξ 2   ξ  1 —  (3.66a)
                                                       ----- ξ exp
                                                                         -----------
                                                                 ----- d =
                                        mω π()  ⁄      2       2     2mω
                                                ∞
                                                 ∞
                                              1        ξ 2   d 2    ξ 2   —mω
                                              12∫
                                p ˆ 〈  2 〉 =  – —mω--------------- exp  – ----- --------exp  – ----- d =  ------------  (3.66b)
                                                                      ξ
                                            π ()  ⁄    2  dξ 2    2     2
                                                 ∞
                             and thus their product yields
                                                                    — 2
                                                     2
                                              2
                                          ( 〈  ∆x ˆ) 〉 (〈  ∆p ˆ ) 〉 =  p ˆ 〈  2 〉 q ˆ 〈  2 〉 =  -----  (3.67)
                                                                    4
                             A numerical treatment of the harmonic oscillator problem together with
                             the plots of eigenfunctions is given in Figure 3.8.
                                                 25
                                                 20
                Figure 3.8. A harmonic potential   15
                                                    12.9466
                is indicated by the gray shaded                              10.9617
                                                 10  8.9743
                background. The black lines to the                            6.9843
                left show the symmetric eigen-    5   4.9919                  2.9969
                modes of this potential, aligned     0.9994
                with their respective energy eigen-
                values. The black lines to the right
                are the anti-symmetric eigen-
                modes, similarly aligned.









                122          Semiconductors for Micro and Nanosystem Technology
   120   121   122   123   124   125   126   127   128   129   130