Page 89 - Semiconductor For Micro- and Nanotechnology An Introduction For Engineers
P. 89

The Crystal Lattice System
                             temperature  Θ
                                           is introduced that characterizes the lowest temperature
                                         D
                             at which all modes of the crystal are being excited. After some algebraic
                             manipulations (see e.g. [2.1], p. 458) we obtain the expression
                                                         Θ D
                                                         -------
                                                          T   4 x
                                                      T    3  x e
                                          C =  9Nk   -------  --------------------- xd  (2.91)
                                            v      B  Θ  ∫  x   2
                                                       D
                                                          0  ( e –  1)
                             Upon evaluation the Debye relation leads to the following rather awful
                             but exact analytical expression (computed using Mathematica®)
                                                   1                 T       Θ D   4
                                                              
                              C =   –  9Nk ------------------------------------------------------------ 15exp  ------- –  4 π-------  +
                                v        B               Θ D       Θ        T 
                                                             4
                                                  T
                                                        
                                            
                                          15 exp  ------- –  1 -------  D
                                                        
                                                Θ  D   T 
                                            T    Θ D  4  Θ D         T
                                      4exp  ------- π-------  +  60-------ln  1 –  exp  -------  –
                                           Θ     T      T           Θ
                                             D                          D
                                                  T Θ D           T
                                           60exp  ------- -------ln  1 –  exp  -------  +
                                                 Θ    T           Θ
                                                   D               D
                                    Θ D   2   T             T   Θ D   2   T
                                                    –
                                180 ------- Li exp(  ------- ) 180exp  -------  ------- Li exp(  ------- ) –
                                     T   2   Θ D           Θ D    T   2  Θ D
                                    Θ D   3   T            T   Θ D  3     T
                               360 ------- Li exp(  ------- ) 360exp  -------  ------- Li exp(  ------- ) +
                                                    –
                                     T   3   Θ             Θ    T   3    Θ
                                                 D            D                D
                                    Θ   4                         Θ   4           
                                     D         T            T    D         T
                                                     –
                                360 ------- Li exp(  ------- ) 360exp  -------  ------- Li exp(  ------- ) 
                                     T   4    Θ  D         Θ D    T   4   Θ D  
                                                                                  (2.92)
                             where  Li z()   is the polylogarithm function. It provides an excellent
                                     m
                             approximation of the specific heat over all temperature ranges, and is
                             plotted in Figure 2.28.
                An-          The harmonic potential is in fact a truncated series expansion model of
                harmonicity  the true crystal inter-atom potential, and as such is not capable of
                             explaining all lattice phenomena satisfactorily. We briefly discuss one
                             important examples here: the expansion of the lattice with temperature.


                86           Semiconductors for Micro and Nanosystem Technology
   84   85   86   87   88   89   90   91   92   93   94