Page 64 - Separation process engineering
P. 64

Table 2-2. Sources of vapor-liquid equilibrium data

                             Chu, J. C., R. J. Getty, L. F. Brennecke, and R. Paul, Distillation Equilibrium Data, Reinhold,
                             New York, 1950.

                             Engineering Data Book, Natural Gasoline Supply Men’s Association, 421 Kennedy Bldg., Tulsa,
                             Oklahoma, 1953.
                             Hala, E., I. Wichterle, J. Polak, and T. Boublik, Vapor-Liquid Equilibrium Data at Normal
                             Pressures, Pergamon, New York, 1968.

                             Hala, E., J. Pick, V. Fried, and O. Vilim, Vapor-Liquid Equilibrium, 3rd ed., 2nd Engl. ed.,
                             Pergamon, New York, 1967.
                             Horsely, L. H., Azeotropic Data, ACS Advances in Chemistry, No. 6, American Chemical
                             Society, Washington, DC, 1952.

                             Horsely, L. H. Azeotropic Data (II), ACS Advances in Chemistry, No. 35, American Chemical
                             Society, Washington, DC, 1952.
                             Gess, M. A., R. P. Danner, and M. Nagvekar, Thermodynamic Analysis of Vapor-Liquid
                             Equilibria: Recommended Models and a Standard Data Base, DIPPR, AIChE, New York, 1991.

                             Gmehling, J., J. Menke, J. Krafczyk, and K. Fischer, Azeotropic Data, VCH Weinheim, Germany,
                             1994.

                             Gmehling, J., U. Onken, W. Arlt, P. Grenzheuser, U. Weidlich, B. Kolbe, J. R. Rarey-Nies,
                             DECHEMA Chemistry Data Series, Vol. I, Vapor-Liquid Equilibrium Data Collection,
                             DECHEMA, Frankfurt (Main), Germany, 1977–1984.
                             Maxwell, J. B., Data Book on Hydrocarbons, Van Nostrand, Princeton, NJ, 1950.

                                                                                                                       th
                             Perry, R. H., and D. Green, (Eds.), Perry’s Chemical Engineer’s Handbook, 7  ed., McGraw-
                             Hill, New York, 1997.

                             Prausnitz, J. M., T. F. Anderson, E. A. Grens, C. A. Eckert, R. Hsieh, and J. P. O’Connell,
                             Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria,
                             Prentice-Hall, Upper Saddle River, NJ, 1980.
                             Stephan, K., and H. Hildwein, DECHEMA Chemistry Data Series, Vol. IV, Recommended Data
                             of Selected Compounds and Binary Mixtures, DECHEMA, Frankfurt (Main), Germany, 1987.

                             Timmermans, J., The Physico-Chemical Constants of Binary Systems in Concentrated Solutions,
                             5 vols., Interscience, New York, 1959–1960.
                             Van Winkle, M., Distillation, McGraw-Hill, New York, 1967.

                             Wichterle, I., J. Linek, and E. Hala, Vapor-Liquid Equilibrium Data Bibliography, Elsevier,
                             Amsterdam, 1973.
                             www.cheric.org/research/kdb/ (click on box Korean Physical Properties Data Bank).

                    We see in Table 2-1 that if pressure and temperature are set, then there is only one possible vapor
                    composition for ethanol, y        , and one possible liquid composition, x         . Thus we cannot arbitrarily set
                                                  Etoh                                             Etoh
                    as many variables as we might wish. For example, at 1 atm we cannot arbitrarily decide that we want
                    vapor and liquid to be in equilibrium at 95 ° C and x            = 0.1.
                                                                                Etoh
                    The number of variables that we can arbitrarily specify, known as the degrees of freedom, is determined
                    by subtracting the number of thermodynamic equilibrium equations from the number of variables. For
                    nonreacting systems the resulting Gibbs’ phase rule is
   59   60   61   62   63   64   65   66   67   68   69