Page 147 - Separation process principles 2
P. 147
112 Chapter 3 Mass Transfer and Diffusion
9. A number of models have been developed for mass transfer 10. The two-film theory of Whitman (more properly referred to as
across a two-fluid interface and into a liquid. These include the film a two-resistance theory) is widely used to predict the mass-transfer
theory, penetration theory, surface-renewal theory, and the film- flux from one fluid phase, across an interface, and into another fluid
penetration theory. These theories predict mass-transfer coeffi- phase, assuming equilibrium at the interface. One resistance is often
cients that are proportional to the diffusivity raised to an exponent controlling. The theory defines an overall mass-transfer coefficient
that varies from 0.5 to 1.0. Most experimental data provide expo- that is determined from the separate coefficients for each of the two
nents ranging from 0.5 to 0.75. phases and the equilibrium relationship at the interface.
REFERENCES
1. TAYLOR, R., and R. KRISHNA, Multicornponent Mass Transfer; John 28. BIRD, R.B., W.E. STEWART, and E.N. LIGHTFOOT, Transport Phenom-
Wiley and Sons, New York (1993). ena, 2nd ed., John Wiley and Sons, New York (2002).
2. POLING, B.E., J.M. PRAUSNITZ, and J.P. O'CONNELL, The Properties of 29. CHURCHILL, R.V., Operational Mathematics, 2nd ed., McGraw-Hill,
Liquids and Gases, 5th ed., McGraw-Hill, New York (2001). New York (1958).
3. FLLLER, E.N., P.D. SCHET~LER, and J.C. GIDDLNGS, Ind. Eng. Chem., 30. ABRAMOWITZ, M., and I.A. STEGUN, Eds., Handbook of Mathematical
58 (5), 18-27 (1966). Functions, National Bureau of Standards, Applied Mathematics Series 55,
4. TAKAHASHI, S., J. Chem. Eng. Jpn., 7,417420 (1974). Washington, DC (1964).
3 1. NEWMAN, A.B., Trans. AIChE, 27,310-333 (193 1).
5. SLA~Y, J.C., M.S. thesis, University of Wisconsin, Madison
(1955). 32. GRIMLEY, S.S., Trans. Inst. Chem. Eng. (London), 23, 228-235
6. WILKE, C.R., and P. CHANG, AIChE J., 1,264-270 (1955). (1948).
33. JOHNSTONE, H.F., and R.L. PIGFORD, Trans. AIChE, 38,25-51 (1942).
7. HAYDUK, W., and B.S. MINHAS, Can. J. Chem. Eng., 60, 295-299
(1982). 34. OLBRICH, W.E., and J.D. WILD, Chem. Eng. Sci., 24, 25-32 (1969).
8. QUAYLE, O.R., Chem. Rev., 53,439-589 (1953). 35. CHURCHILL, S.W., The Interpretation and Use of Rate Data: The Rate
9. VIGNES, A,, Ind. Eng. Chem. Fundam., 5,189-199 (1966). Concept, McGraw-Hill, New York (1974).
36. CHURCHILL, S.W., and R. USAGI, AIChE J., 18, 1121-1128 (1972).
10. SORBER, H.A., Handbook of Biochemistry, Selected Data for Molecu-
lar Biology, 2nd ed., Chemical Rubber Co., Cleveland, OH (1970). 37. EMMERT, R.E., and R.L. PIGFORD, Chem. Eng. Prog., 50, 87-93
11. GEANKOPLIS, C.J., Transport Processes and Separation Process (1954).
Principles, 4th ed., Prentice-Hall, Upper Saddle River, NJ (2003). 38. PRANDTL, L., Pmc. 3rd Int. Math. Congress, Heidelberg (1904);
12. FRIEDMAN, L., and E.O. KRAEMER, J. Am. Chem. Soc., 52,1298-1 304, reprinted in NACA Tech. Memo 452 (1928).
1305-1310, 1311-1314 (1930). 39. BLASIUS, H., Z. Math Phys., 56,l-37 (1908); reprinted in NACA Tech.
13. BOUCHER, D.F., J.C. BRIER, and J.O. OSBURN, Trans. AIChE, 38, Memo 1256.
967-993 (1942). 40. SCHLICHTING, H., Boundary Layer Theory, 4th ed., McGraw-Hill,
14. BARRER, R.M., Diffusion in and through Solids, Oxford University New York (1960).
Press, London (1951). 4 1. POHLHAUSEN, Z. Angew. Math Mech., 1,252 (1921).
E.,
15. SWETS, D.E., R.W. LEE, and R.C. FRANK, J. Chem. Phys., 34, 17-22 42. POHLHAUSEN, E., Z. Angew. Math Mech., 1, 115-121 (1921).
(1961).
43. LANGHAAR, H.L., Trans. ASME, 64, A-55 (1942).
16. LEE, R. W., J. Chem, Phys., 38,44455 (1963).
44. GRAETZ, L., Ann. d. Physik, 25,337-357 (1885).
17. WILLIAMS, E.L., J. Am. Ceram. Soc., 48,190-194 (1965).
45. SELLARS, J.R., M. TRIBUS, and J.S. KLEIN, Trans. ASME, 78,44148
18. SUCOV, E.W., J. Am. Ceram. Soc., 46, 14-20 (1963). (1956).
19. KINGERY, W.D., H.K. BOWEN, and D.R. UHLMANN, Introduction to 46. LEVEQUE, J.,Ann. Mines, [12], 13,201,305,381 (1928).
Ceramics, 2nd ed., John Wiley and Sons, New York (1976).
47. KNUDSEN, J.G., and D.L. KATZ, Fluid Dynamics and Heat Transfel;
20. FERRY, J.D., Viscoelastic Properties of Polymers, John Wiley and McGraw-Hill, New York (1958).
Sons, New York (1980).
48. HAUSEN, H., Veijahrenstechnik Beih. z. Vex Deut. Ing., 4, 91 (1943).
21. RHEE, C.K., and J.D. FERRY, J. Appl. Polym. Sci., 21,467476 (1977).
49. LINTON, W.H. Jr., and T.K. SHERWOOD, Chem. Eng. Pmg., 46,258-264
22. BRANDRW, J., and E.H. IMMERGUT, Eds., Polymer Handbook, 3rd ed., (1950).
John Wiley and Sons, New York (1989).
50. REYNOLDS, O., Trans. Roy. Soc. (London), 174A, 935-982 (1883).
23. GIBSON, L.J., and M.F. ASHBY, Cellular Solids, Structure and Proper- 51. BOUSSINESQ, J., Mem. Pre. Par. Div. Sav., XXIII, Paris (1877).
ties, Pergamon Press, Elmsford, NY (1988).
52. PRANDTL, L., Z. Angew, Math Mech., 5, 136 (1925); reprinted in
24. STAMM, A.J., Wood and Cellulose Science, Ronald Press, New York
NACA Tech. Memo 1231 (1949).
(1964).
53. REYNOLDS, O., Proc. Manchester Lit. Phil. Soc., 14,7 (1874). I
25. SHERWOOD, T.K., Ind. Eng. Chem., 21,12-16 (1929).
54. COLBURN, A.P., Trans. AIChE, 29,174-210 (1933). 1
26. CARSLAW, H.S., and J.C. JAEGER, Heat Conduction in Solids, 2nd ed.,
Oxford University Press, London (1959). 55. CHILTON, T.H., and A.P. COLEURN, Ind. Eng. Chem., 26, 1183-1187
(1934). i
27. CRANK, J., The Mathematics of Diffusion, Oxford University Press,
London (1956). 56. PRANDTL, L., Physik. Z., 11, 1072 (1910).

